ENZYMOLOGY
Enzyme from the Greek   ένζυμο,   énsymo,
                  
             which means én ("in")   and  simo  ("leaven")
  
   -
enzymes are catalytic proteins that ACCELERATE REACTION RATES
   
  
-  i.e., they control metabolism
            molecules (mostly protein vs. ribozymes) that catalyze 
            chemical reactions (A--->B) in cells by breaking 
            old covalent bonds & forming new covalent bonds

 
                                              
  
-
are biological catalysts but, different from a chemical catalyst -
           
have complex structure (sequence of aa’s) that act only upon
            specific substrates & don't change direction (energetics) of rx.

    

      
catalysis* = acceleration of rate of a chemical reaction via a catalyst
                            
                                           
          - enzymes convert substrates to products w/o themselves changing
      

ex: cAMP protein kinase A* [2.7.11.11] group of enzymes that transfer P from ATP to SER on proteins
  

   
 
                         

 

 

 

 

 

 

 

 


 
     
 
       Some important early dates in
Enzyme History
          
     1833  Payen & Peroz - alcohol precipitate of malt barley holds heat labile
                                   components
that converted starch to sugars (1st enzyme proteins) 
         
      1878  Wilhelm Kuhne - coins term 'enzyme' : Greek "in leaven"
            
   1897  Hans & Eduard Buchner - yeast 'zymase' + ferment sugars = CO2 & ETOH
            
   1898  Emile Ducleaux - customizes the use of suffix "ASE " for enzyme naming

               
1900  E. Fischer - describes the stereospecificty of enzymes (lock & key hypothesis).

                1st enzyme crystallized urease    [EC 3.5.1.5],   1926 James Sumner
                      Sumner was first to purify a protein fraction with catalytic activity...
                        
2 NH2-CO-NH2   +   2 H2O     ----->     4 NH+4   +    2 CO2 
                   the purity of an isolated enzyme is based upon its crystallization...

     
                - 1,000s of enzymes have since been purified & crystallized
               
- except for ribozymes (that also have catalytic activity) - all are proteins
               
- proof that a biological activity is due to an enzyme has usually been...
                  noting if the
loss of biological activity that is result of
proteolytic digestion.

 
  3a
 

 

 

 

 

  

 

 
 

 
   

ENZYME  REACTION  PATH

        E + S <--> [ES] <--> E + P

enzymes catalyze reactions by 
lowering the
energy of activation... Ea

ecb3.12
*    hexokinase*
via a dissociable complex fig
   

   

There is no difference in
free energy
between an
enzyme catalyzed reaction
and an uncatalyzed reaction,
but a non-enzyme catalyzed
reaction requires higher
initial energy input than an
enzyme catalyzed reaction.

       hydrolyase
 

                                                                                                                                                                                                                                                                             cut
        Peroxidase:   2H2O2   --->   2 H2O  +  O2 
           condition                 Ea (cal/mol)              Rate (lt/mol/sec)

       no catalyst               18,000                       1.0   x  10-7
            Fe catalyst               10,000                     56.0
            peroxidase                 2,000                       4.0   x  106
    
     turnover number - number of substrate molecules converted to 
     product per second for a single enzyme molecule
.  Karp-table 3.4 pg93
*
   

 

  

 

 

 

 

 


 

 

 


        

Some Terminology
       substrate, product, enzyme... self explanatory

  
Ribulose
                              biphosphate carboxylase/oxygenase

Rubisco

 

 

Cofactors* : non-protein compounds, required for a protein's
      biological activity... often as small inorganic ions...
      including many
metal ions: Cu, Mg, Mn, Fe  [Fe-S proteins],
      which act as activators &/or inhibitors of activity...
      Table of  vitamin  cofactors:

Coenzymes* : small non-protein ligands that catalyze reactions…
                      +/- electrons,  transfer a group, 
                      forms or breaks a covalent bond, etc...
           
          
NAD+
* (NADP+) : redox coenzymes - dehydrogenations*
                                      H+ carrier
and/or electron transfer:
                      1st proteinaceious reactions
were likely e- transfers?  
           FAD
* : another redox coenzyme
          
CoASH
* : acyl carrier(3HC-C=O) via sulfhydryl (-SH)
           
LIPOIC acid : oxidative de-COOH of alpha-keto acid

prosthetic group:  large complex organic molecule, 
                          
  which may have catalytic activity (heme)
a Redox reaction :    Succinate dehydrogenase example

   

  

 

 

 

 

 


 
   
  
more terminology
 
 
 

    active site:   portion of enzyme which folds to precisely fit the contours of a substrate via weak
                          electrostatic interactions  &  facilitates bond reactivity
  (trypsin* cAMP-PKA*)        


    enzyme-substrate complexcreates a unique joining of enzyme & substrate at the  active site
                   [lock & key  vs.  induced fit  vs.  unstructured sites]
                         Lysozyme's
                                active site binds polysaccharide chains*
                Lysozyme  (Enzyme Commission No. 3.2.1.17) hydrolyzes glycosidic bonds
 
 

                                What is it that an ES-active site complex does exactly ?


next



  


 




















   
   

  
   This is what an ES Complex can do?

            - holds substrate
out of aqueous solution  fig - McKee 5.24*

            - holds substrate in
specific orientation*, close to transition state to allow reaction to occur

            -
reduces ability of free rotation
*  & molecular collisions with non-reactive atoms

            - allows amino acid side chains to
alter local environment:
                        can change ionic strength, pH, add or remove H-bonds to substrate
                        while precisely holding substrate so that it can be acted upon...   


            
- ex:
  
  Rubisco* 
                            
                             Analogy:    a nut & bolt held in your hand decreases the Entropy of their             
  
 
                                             binding over a random mix of nuts and bolts in a toolbox.
      
       

 

 

 

 

 

 

 

 

 

   
Detailed Active Site Mechanisms of Enzyme Action:
              3 examples...
        the chemical reaction scheme by which an enzyme acts upon its substrate
...

    
   1.   Lysozyme example:   (2013 Nobel Prize Chemistry for Computer Modeling Molecular Processes)   
               - an enzyme that cuts polysaccharide
* glycosidic bonds by hydrolysis (adds H2O
               - active site is a long groove, holding six sugar units...
                           has 2 acidic side side chains (
GLU & ASP) hold substrate
               - breaks glycosidic bond (… -C-O-C- …) via bond strain & distortion of glu & asp
               - 
enzyme binding of substrate, bends bonds from a stable state,  lowering Ea.
                          
acidic side group of GLU provides a proton to attack glycosidic bond
[pic],
                        
and
ASP  favors hydrolysis of glycosidic bond [
lysozyme animation* & ecb 4.35*].
 
   2.  
Protease* hydrolysis of peptide bonds: serine
protease* catalytic sites hold ser195, asp102,
        & his57: 
-OH of ser195 e's attack C=O of peptide bond & transition state is held by H-bonds;
        e's break peptide bond & release part of protein; H-O-H is split & added to split bond.

  

   3.  catalytic action of cAMP dependent Protein Kinase A*  -   e's of ATP are delocalized by LYS & Mg+2;
         new bond forms between
SER-OH
  & 
γP;  bond between  βP-γP  broken = ADP + P-protein.
   

                                     
"a proper shape of an enzyme is critical to its ability to catalyze a reaction".

 
 
  How do we determine the rates of a enzymatic reaction A --> B ???

        

 

 

 

 


 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 


 
 
 
Enzyme Kinetics…
 
    define the physical & chemical properties of enzyme by mathematical and/or graphical
     expression of the
reaction rates of enzyme catalyzed reactions. 

                                                                                
        Catalase
       
EC 1.11.1.6
  
Dye  +  H2O2  --->  2 H2O   +   colored dye
its reactivity is made visible using a marker that, when oxidized by enzyme using H2O2
as the oxidizing agent, yields a color change detectable by spectrophotometric methods.

   Characteristic Graphical Enzyme Kinetic Curves:
 
                         this is how to determine if the reaction   A —> B   is enzymatic??? 

Observed enzyme Kinetic Reaction graphical curves :
   1.    Rate (0.8 ml O2/min)   Vs.   [ E ]      a classical 1st order linear plot
   2.    Rate   Vs.   pH
   3.    Rate   Vs.   Temperature    figure*
   4.    Rate   Vs.   [S]        but the most CHARACTERISTIC curve… is a plot of  v vs [S]
           catalase rate of O2 production
or  rate of "colored dye" production

  

 

 

 

 

 

 

 

 

 


 

 

 

Enzyme rate (v) substrate concentration curves:
 
          A Michaelis-Menten Curve
v vs. [S] curve defines a rectangular hyperbola
at low [S], rate is directly proportional to [S]
at higher [S], rate declines giving a hyperbolic curve

   
one gathers data points for an enzyme curve -->
                          
                        - ecb 3.27*
   

1st & 2nd order reaction kinetics alone are NOT sufficient 
                                                    to describe the shape of a plot of enzyme reactions (above)  

     A        <--k1-->  B        for 1st order Rx           dP/dt    =     k1 [A]         = linear response  thus no
     A + B  <--k2-->  C       for 2nd order Rx          dP/dt    =     k2 [A] [B]    = also linear          thus no
 
 


 

 

 

 

 

 

 

 

 

 

 

  

  
 

     in
1913 Leonor MICHAELIS  &  Maud MENTEN
                    proposed a mathematical modeling of enzyme reactions using algebraic
                    expressions and rate constants to define a rectangular hyperbola response.
                                                    k =  rate / [A] * [B]
                                 k1               k3   
E + S <---------> ES <--------> E + P
            k2               k4
       
   

      Some assumptions in the Michaelis & Meneten enzyme equation derivation...                                                

                
1)  rate formation ES complex from E + P is negligible, i.e., can ignore the rate constant k4
                
2)  rate LIMITING step is disassociation of   ES  to  E + P   =   k3   (speed of dissociation)
                                 
k3 (rate constant) is # of molecules converted by this reaction per unit time
                                                                          v = (dP/dt)  = 
k3 [ES]                 
     
           3)  an important state of the ENZYME is termed FREE ENZYME which is able to react
                                bound enzyme           =     [ES] 
                                free enzyme               =     [Et - ES]  

                              
  total enzyme              =    
[Et] =  [Et - ES]  +  [ES]

  

         "Die Kinetik der Invertinwirkung" Michaelis, L.; and Menten, M.L. (1913) Biochem. Z. 49, 333-369.


 

 

 

 

 

 

 

 

 

 

 

   

Derivation of Michaelis-Menten Enzyme Kinetics...
  
   their derivation of equation occurs at a time when...
             the
rate of formation of ES complex is equal to rate of destruction (break down),
             i.e., at a time when
[S] >>>> [E],  so that total E is bound in ES complex and
             thus reaction works like a 1st order reaction enzyme catalyzed reaction

 
     the rate limiting equation thus becomes destruction of ES...       v = (dP/dt) = k3 [ES]
  
     it would be easy if we could measure the concentration of [ES]...  say in a spectrophotometer
     but, its presence is fleeting.... 
so then the real function of of M&M kinetics is to be able
     to express 
[ES]  in terms of  E  &  S  alone, which are measurable quantities

         
        measuring [ES] quantitatively is very difficult    [ a stopped flow apparatus ecb 3.28* ]
  
                 the derived
 M & M equation is then :       v  =   Vmax [S]    -->  gives graph*                                                                                                                    Km + [S]                           

                       mathematical derivationtake-a-look      
y =   a  *  x       is the equation for a hyperbolic curve.
                                                                                           ( b + x )
  

    the key to using the M&M equation is understanding what the Km [Michaelis Constant] is...
 

  

 

  

  

 

 

 

 


 

 

 

 

 

 

 

 

 
 
     Km - the Michaelis Constant         What does it tell us      
                ...it's   applicable to enzyme reactions involving a single substrate
                ...it's   "inherent tendency" of reactants to interact chemically for that reaction
                ...it's   a constant that is independent of  [ES] and is defined by [S]
                ...it's   a mathematical interpretation of an enzyme reaction's kinetics
                ...it's   a measure of how efficiently an enzyme converts a substrate to product
 

                ...it's the
substrate concentration...
 when enzyme velocity is equal to ½ Vmax
  

                   thus, when  V  =   ½ Vmax           v =  Vmax [S]       thus        Vmax  =  Vmax   [S]  
                                                                                          (Km) + [S]                         2            (Km) + [S]
 

             Solve  1  =           [S]              & rearrange
                        2         (K m) + [S]                Km + [S]  =   2  [S]        thus    Km  =  [S]

  
                 native values for Km's  10-1  to 10-7 M        "average" Km is  10-4 M   

      
  

 

 

       

 

 

 

 

 

 
 
Km is a characteristic physical property for each and every different enzyme.
                    

                     it is independent of [
E]  and is independent of [S]
                     it measures 
"relative affinity"  of an enzyme for its substrate...

    

suppose there's more than 1 possible substrate for a particular enzyme,  say... 
  

   
kinases - enzymes that transfers phosphate groups from high-energy donor
       molecules, such as ATP, to specific substrates, each enzyme having its own
Km...
          
ex:  one enzyme with 2 substrates each with following Km's =  1 mg   &   25 mg
         
       thus, one takes less substrate to reach same rate… 
½
Vmax rate   figure*

                 many enzymes have individual steps in a complex reaction sequences, 
                 each step has its own Km's…
                                         i.e.,
Km is a complex function of many individual rate constants 
    

              
not all enzymes are treatable by M & M kinetics…

               most
regulatory enzymes
(multi-subunits) are not treatable by M&M kinetics.
  

      Km is the concentration of substrate which permits the enzyme to achieve half Vmax.
          An enzyme with a high Km has a low affinity for its substrate, and requires a greater
          concentration of substrate to achieve Vmax.
*

 

 

 

 

 

 

 

 

 

 

 

 
  Some ways to determine Km...  the [S] at ½ Vmax
  
       1.  by extrapolation from a graph* of a M & M standard curve      v  vs.  [S]               
 

 

 

 

 

 

     

curve

 

 

 

 

 

 

 

 

 

 

 


 



 
  

 
2.  by transformation of M & M curve graphically [greater accuracy]
      Hans LINEWEAVER & Dean BURK plots          plot*          comparison fig ecb-4.36*
        take the reciprocal of both sides of M&M equation & plot
          1   =   Km      x    1   +    
          v      Vmax          S      Vmax  
    

                            x intercept equals 
-1/Km
                           
 y intercept equals   1/Vmax

 3EADIE - HOFSTEE Plots* 
          
v     vs.     v/[S]                               slope equals  Km
                                                       
   y intercept equals  Vmax
   

  

 

 

 

 




          

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 


   
 
   Practical uses of Km:    determining effect on other molecules on an Enzymes' Km (shape):
 

     Enzyme Inhibition...  reducing reaction rates via binding of non-substrate molecule

   2 classes of enzyme inhibitor molecules: 

1. IRREVERSIBLE - inhibitor molecule can not be easily removed from enzyme,
         thereby
reducing the total number of working enzyme molecules (lowers Vmax).  
         i.e, enzyme is physically altered by binding of inhibitor - reducing its amount.

                
ex:     alkylating agents like iodoacetamide (bind to CYS-SH’s)
                         
organophosphorous compounds- nerve gases (bind to SERs)
                some
antibiotic drugs, such as
penicillin, form covalent links to enzyme active site.

 

2. REVERSIBLE - enzyme activity may be restored by overcoming the effect of the inhibitors  
                             and are thus treatable by M & M kinetics
                 2 major types of reversible inhibitions... 
 
                      a.   COMPETITIVE 
         
              b.   NON-COMPETITIVE

 

 

 

 

 

 

    




 

 
 


        First let's look at Reversible Enzyme Inhibition as it is treatable by M&M Kinetics:

         REVERSIBLE COMPETITIVE  INHIBITION...

     inhibitor binds to E & forms an [EI] complex* at the active site    

     inhibitor often looks like substrate... fools active site & binds.

     extent of inhibition is concentration dependent [inhibitor is often at fixed conc]

                          thus it can be overcome* if [S] is very high,   i.e., [S] >>> [I]

                one classical example is malonic acid inhibition of SDH*

                easy to demonstrate is via graphical plots*

                                    shows Vmax is SAME,   but  Km  value is increased
 

 

 

 

 

 

 

 


 

 

 

 

   

        REVERSIBLE  NON-COMPETITIVE  INHIBITION...

     inhibitor binds to E, forms an [EI] complex* not at the active site

    inhibitor often bears no structural relationship to substrate

     removes a net amount of active enzyme, i.e., lowers total [E]

                        i.e., it can NOT be overcome, even if [S] is very high

              easy to demonstrate via graphical plots*

  shows Km is SAME  &   Vmax is different     figure*

              One can also measure binding kinetics in facilitated diffusion and
              signal molecules using Michaelis-Menten analyses.   figure
*
   


         
ex1   <--  examples of reversible competitive inhobition 










  

 
 
   
  Examples of Competitive Enzyme Inhibition  and  some Mechanisms of Drug Action

         ACE Inhibitors - drugs that bind to the ACE enzyme active site & reduces its activity.

               ACE - Angiotensin Converting Enzyme: a proteolytic enzyme that cuts Angiotensin I,
                           a polypeptide of 10 amino acids, into Angiotensin II (of 8 amino acids).

           Angiotensin* II promotes hypertension ( high blood pressure - HBP ) via vasoconstriction

                       in 1960's John Vane discovered TEPROTIDE in Brazilian pit viper venom, a
                       nonopeptide (of 9aa = 
Tyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro
) which can functions 
                       as a
competitive inhibitor
* by binding to the active site of the ACE enzyme.

               today there are a number of synthetic peptide ACE inhibitors, all called "prils"...
                                              (
lisinopril, captopril, trandolapril
, moexipril, ramipril, etc...

      
        another competitive inhibitor example...  Viagra

      <--  Irreversible enzyme inhibition





           

 

 

 

 

  






      


 


   


  
2.  IRREVERSIBLE ENZYME INHIBITION... Mechanism of Action of some Inhibitors...

     a.  Sarin gas*: a nerve gas agent forms a covalent link to serine at active site of enzymes

     b.  Antibiotics - a natural molecule (often made by bacterial cells) that can kill other
                              bacterial cells (& without hurting eukaryotic cells, which are
insensitive)

  ex:  Penicillin - any one of a group of antibiotics derived from the fungus Penicillium.                            
           
The action of natural penicillin was accidentally discovered (1928) by Scottish bacteriologist       
             Alexander Fleming
(1881-1955). Howard Florey (1898-1968) & others noted anti-bacterial effect.

         Penicillin is an analog-like molecule structurally similar to bacterial peptidoglycans, which
                         irreversibly binds at active site of peptidoglycan transpetidase
[cross-linking
*]
                     
thereby reducing the enzyme's activity, weakening bacterial cell walls that
                         results in rupturing & cell death.


         < --link to enzyme nomenclature                  


  

 

 
 
 
 
 
 
 
 
 
 
 

 

  
 

       CLASSIFICATION OF ENZYMES
 

  
   Enzyme Commission - IUBMB International Union Biochemistry & Molecular Biology
                                                some history of enzyme nomenclature by the IUBMB       

      4 digit Numbering System    [1.2.3.4.]      established by Enzyme Commission 1958

              1st #...      one of 7 Major Classes of Enzyme Activity*   [EC 1.11.1.6]  

              2nd #...     a subclass (e.g., type of bond acted upon)

              3rd #...     a subclass (e.g., group acted upon, cofactor required, etc...)

              4th #...      a serial number… (e.g., order in which enzyme was added to list)

                                               

 










 


 
  Enzyme Commission - Major Classes of Enzymes:    some BIL 255 enzyme examples
  
  
1. Oxidoreductases...
[ dehydrogenases ]
    
                            catalyzes oxidation reduction reactions, often using coenzyme as
NAD+/FAD
                                      Alcohol dehydrogenase   [EC 1.1.1.1]  ethanol + NAD+ ---> acetaldehyde + NADH
   2. Transferases...  catalyzes the transfer of functional group         
                                        Hexokinase (glucokinase)  [EC 2.7.1.2]   D-glu + ATP ---> D-glu-6-P + ADP
   3. Hydrolases      catalyzes hydrolytic reactions adds water across C-C bonds 
                                      Carboxypeptidase A   [EC 3.4.17.1  [aa-aa] n + H2O ---> [aa-aa] n-1 + aa
   4. Lyases...            cleaves C-C, C-O, C-N & other bonds often generating a C=C bond or ring
                                        Pyruvate decarboxylase   [EC 4.1.1.1   pyruvate ---> acetaldehyde + CO
   5. Isomerases      [mutases]  catalyze isomerizations
                                      Maleate isomerase   [EC 5.2.1.1]  maleate ---> fumarate     [HFCS]
   6. Ligases            condensation of 2 substrates with splitting of ATP
                                      Pyruvate Carboxylase   [EC 6.4.1.1  PYR + CO 2 + ATP ---> OAA + ADP + P
   7. Translocases   catalyze the movement of molecules across membranes
                                     phosphate transporter   [EC 7.3.2.1] ATP + H2O + phosphate binding protein side1 ---> ADP + PBP side2
 
                       the more common nomenclature of functional classes of enzymes*** 
 
   metabolic
                                  design next lecture - Metabolic Design











 



























































  
 
 
 
 
 
 
 
 
 








  

   metabolic
                                design next lecture - Metabolic Design 
 
 
 
 
 
 
 
 







  
 
 
 
 
 
 
 
 
 




  
 
 
 
 
 
 
 


  
 
 
 
 
 
 
 


  
 
 
 
 
 
 
 


  
 
 
 
 
 
 
 
 
 






 
 






 
 






 
 










  
 
 
 
 
 
 
 
 
 


     SKIP ALL THE MATERIAL BELOW
Some specific Examples of Native Enzyme Inhibition:

   

1.  Irreversible Enzyme Inhibition & Mechanism of Action of some Inhibitors...

     a.  Sarin gas*: a nerve gas agent forms a covalent link to serine at active site of enzymes

     b.  Antibiotics - a natural molecule (often made by bacterial cells) that can kill other
                               bacterial cells (& without hurting eukaryotic cells:
they're insensitive)

  ex:  Penicillin - any one of a group of antibiotics derived from the fungus Penicillium.                            
        
The action of natural penicillin was accidentally discovered (1928) by Scottish bacteriologist       
         Alexander Fleming
(1881-1955). Howard Florey (1898-1968) & others noted anti-bacterial effect.

         Penicillin is an analog-like molecule structurally similar to bacterial peptidoglycans, which
                         irreversibly binds at active site of peptidoglycan transpetidase
[cross-linking
*]
                     
thereby reducing the enzyme's activity, weakening bacterial cell walls that
                         results in rupturing & cell death.


  

               

 

 

 

 

 

 2a.  Competitive Enzyme Inhibition  and  some Mechanisms of Drug Action

         ACE Inhibitors - drugs that bind to the enzyme's active site & reduces its activity.

               ACE - Angiotensin Converting Enzyme: a proteolytic enzyme that cuts Angiotensin I,
                         a polypeptide of 10 amino acids into Angiotensin II (of 8 amino acids).
     figure*

           Angiotensin II promotes hypertension ( high blood pressure - HBP ) via vasoconstriction

                       in 1960's John Vane discovered TEPROTIDE in Brazilian pit viper venoms, a
                       nonapeptide (9aa = 
Tyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro
) which can functions as
                       a
competitive inhibitor
* by binding to the active site of the ACE enzyme.

               today there are a number of synthetic peptide ACE inhibitors, all called "prils"...
                                              (
lisinopril, captopril, trandolapril
, moexipril, ramipril, etc...

      
        another competitive inhibitor example...  Viagra

      <--  link to enzyme nomenclature           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 
SKIP all of the material below - move to this link  
 
Kinetic Mechanisms of REGULATION of Protein &  Enzyme Rates

   Some approaches commonly employed by cells...
    

  

     
1.  by controlling number of enzyme molecules present (gene action)
 

     
2.  by sequestering (compartmentalizing) – for example into lysosomes, mitochondria

      3 by converting inactive peptides to active enzymes
                - often involves hormones, acid hydrolysis and/or digestive proteases
                - pancreas makes zymogens...   (an inactive enzyme large precursor)
                        ex: pepsinogen* & trypsionogen & chymotrypsinogen

    

                              enterokinase
*, an aminopeptidase from the lining of small intestine...
                              it hydrolyzes trypsinogen to trypsin (active form), which itself
                              hydrolyzes chymotrypsinogen to
chymotrypsin. 

  

 

 

 

 

 

 

  

 

 
   
 
     
4.  regulation by adjusting reaction rates of existing enzyme (often via... M&M kinetics)
  

           a) 
STOICHIOMETRIC controls - limit amount a reactant (substrate) present
   

          
b) 
ALLOSTERY -  [allosteric kinetics... akin to noncompetitive inhibition kinetics]
                      - binding of a regulator ligand results in a
change of 3o/4o conformations
                      -
common in multimeric proteins and enzyme complexes
                      - allosteric proteins have 2 binding sites: 
active site = substrate
                                                                                       
allosteric site = regulator ligand
                    1)    aspartate transcarbamylase initial enzyme in pyrimidine synthesis- ecb 4.40*
                    
binding of CTP favored tight conform = inactive state = feedback inhibition
                                     -
active form =
+ catalysis    &      inactive conformation = - catalysis
                                     -
ligand often serves as substrate, activator, or inhibitor (or all three)

   
 

 

 

 

 

 

 

 

  
  

  
    Some additional examples of Ligand induced Allostery...

  

          2)  Cooperative Binding
: binding of one ligand affects subsequent bindings
                        if
+  =  enhances subsequent bindings
                        if
-  =  sequential bindings are inhibited
                             ex:
HEMOGLOBIN:  binding of 1 O2 to a heme = Δ in local conformation
                                                            
enhances "Km" of binding of additional O2 to other
                                          subunits 
chains (mcb3.30) & cooperative binding (McKee 5.41*)
  

          3)  Ligand-induced binding activations of catalysis:
                 a. inactive PKA is activated by cAMP...
                      binding of cAMP induces 
Δ in conformation, so that a tetramer dissociates
                      into 2 active monomers & a dimeric regulatory subunit   
(ecb16.25*)
                               thus a hormone signals --> cAMP --> active PKA dimer
                               without cAMP we have an inactive tetramer

   
 
               b. GroEL chaperonin:  is made of 2 multi-subunit rings            (ecb 4.10*)
                      binding of ATP & GroES to GroEL results in a tight peptide binding complex,
                      which closes the folding cavity allowing efficient folding of nascent proteins

  



 

 







 
 
  
   3. Calmodulin*: a Ca binding messenger protein: functions as messenger protein altering targets
                  Calmodulin, is a helix-loop-helix protein, has 4 Ca binding sites...                  [MOVIE
*]  
                  4 Ca ions bind = 
Δ in conformation - now binds target proteins = altering its activity>
                 Calmodulin modulates processes as inflammation, apoptosis, smooth muscle contraction, etc...

  
      
4. GTPase super family:  a group of hydrolase enzymes that bind & split GTP switching between
                         active/inactive forms via signal transduction.
(includes Ras & G-proteins)
                 GTP Binding Proteins (G Proteins)
                  
  are Active  when  GTP
  is bound to protein                                   ecb 15.15 & 15.16*
                           
Inactive  when  GTP  is hydrolyzed to
GDP
                                          
serve as molecular switches, esp. cell signaling.
   
     

      
5. COVALENT MODIFICATION of existing enzymes often
involves...
                 a.   addition of
P to an inactive enzyme --> activate enzyme via P transfer
                                             [reversible phosphorylation changes protein conformation] 

       
         b.  done by -
PROTEIN KINASES,  which transfer P from ATP       ecb 15.15*
                                                     tyrosine kinases add P to TYR residues of enzymes de-activating them
                                                     serine/theronine kinases add P to SER or THR residues

                                    - PROTEIN PHOSPHATASES...  dephosphorylate, thus inactivating


                             
  

 

 

 

   
   Net RESULTS of Protein Regulatory mechanisms...
                                
all Help Control & Regulate Metabolism.

        feedback inhibition (negative allosteric regulation
                                an initial enzyme is inhibited by end product

                        
        prevalent in the amino acid biosynthetic pathways - figure*

     Primary mechanism of action is altering enzyme's conformation
                                either negatively or positively
*
   

 

                        

 

 

 

 

 

 

 

 

 






















SKIP EVERYTHING BELOW THIS POINT


 

 

    

 

 

 

 

 

 

 

 


 

  

                                                      
     
 
         .
  
    

 

 

 

 

  

 

 
 

 

  

 

 

 

 

 


 

 

 

  

 

 

 

 

 



  
 
 
 

         


   
              
                     
             
 
 

                                





  


 





















  
 
       

 

 

 

 

 

 

 

 

 

   


                                


  

        

 

 

 

 


 

 

                                             

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

     

 

 


 

                                                  
                             
    

 


  

 

 

 

 

 

 


   

   



    
   
 
 


 

 

 

 

 

 

 

 

 

 

 

  


 

 

 

 

 

 

 

 

 

 

 

   


  
  
 
    
  
    
  
              

                                                                                                                 

  
  
 

  

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
    
     
            
  

                
 

          

  
                

     
  

 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 
 
  
             
 

 

 

 

 

 

     




 

 

 

 

 

 

 

 

 

 

 


 



 
  

 
 
     


  
   

  

 

 

 

 




          

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 


 


 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

 

 


 

 

 

 

   

 


                                                                                                                                              

 

 

 

 

 

 

 

 

 




























     SKIP ALL THE MATERIAL BELOW
Some specific Examples of Native Enzyme Inhibition:

   

1.  Irreversible Enzyme Inhibition & Mechanism of Action of some Inhibitors...

     a.  Sarin gas*: a nerve gas agent forms a covalent link to serine at active site of enzymes

     b.  Antibiotics - a natural molecule (often made by bacterial cells) that can kill other
                               bacterial cells (& without hurting eukaryotic cells:
they're insensitive)

  ex:  Penicillin - any one of a group of antibiotics derived from the fungus Penicillium.                            
        
The action of natural penicillin was accidentally discovered (1928) by Scottish bacteriologist       
         Alexander Fleming
(1881-1955). Howard Florey (1898-1968) & others noted anti-bacterial effect.

         Penicillin is an analog-like molecule structurally similar to bacterial peptidoglycans, which
                         irreversibly binds at active site of peptidoglycan transpetidase
[cross-linking
*]
                     
thereby reducing the enzyme's activity, weakening bacterial cell walls that
                         results in rupturing & cell death.


  

               

 

 

 

 

 

 2a.  Competitive Enzyme Inhibition  and  some Mechanisms of Drug Action

         ACE Inhibitors - drugs that bind to the enzyme's active site & reduces its activity.

               ACE - Angiotensin Converting Enzyme: a proteolytic enzyme that cuts Angiotensin I,
                         a polypeptide of 10 amino acids into Angiotensin II (of 8 amino acids).
     figure*

           Angiotensin II promotes hypertension ( high blood pressure - HBP ) via vasoconstriction

                       in 1960's John Vane discovered TEPROTIDE in Brazilian pit viper venoms, a
                       nonapeptide (9aa = 
Tyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro
) which can functions as
                       a
competitive inhibitor
* by binding to the active site of the ACE enzyme.

               today there are a number of synthetic peptide ACE inhibitors, all called "prils"...
                                              (
lisinopril, captopril, trandolapril
, moexipril, ramipril, etc...

      
        another competitive inhibitor example...  Viagra

      <--  link to enzyme nomenclature           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 
SKIP all of the material below - move to this link   -
 
Kinetic Mechanisms of REGULATION of Protein &  Enzyme Rates

   Some approaches commonly employed by cells...
    

  

     
1.  by controlling number of enzyme molecules present (gene action)
 

     
2.  by sequestering (compartmentalizing) – for example into lysosomes, mitochondria

      3 by converting inactive peptides to active enzymes
                - often involves hormones, acid hydrolysis and/or digestive proteases
                - pancreas makes zymogens...   (an inactive enzyme large precursor)
                        ex: pepsinogen* & trypsionogen & chymotrypsinogen

    

                              enterokinase
*, an aminopeptidase from the lining of small intestine...
                              it hydrolyzes trypsinogen to trypsin (active form), which itself
                              hydrolyzes chymotrypsinogen to
chymotrypsin. 

  

 

 

 

 

 

 

  

 

 
   
 
     
4.  regulation by adjusting reaction rates of existing enzyme (often via... M&M kinetics)
  

           a) 
STOICHIOMETRIC controls - limit amount a reactant (substrate) present
   

          
b) 
ALLOSTERY -  [allosteric kinetics... akin to noncompetitive inhibition kinetics]
                      - binding of a regulator ligand results in a
change of 3o/4o conformations
                      -
common in multimeric proteins and enzyme complexes
                      - allosteric proteins have 2 binding sites: 
active site = substrate
                                                                                       
allosteric site = regulator ligand
                    1)    aspartate transcarbamylase initial enzyme in pyrimidine synthesis- ecb 4.40*
                    
binding of CTP favored tight conform = inactive state = feedback inhibition
                                     -
active form =
+ catalysis    &      inactive conformation = - catalysis
                                     -
ligand often serves as substrate, activator, or inhibitor (or all three)

   
 

 

 

 

 

 

 

 

  
  

  
    Some additional examples of Ligand induced Allostery...

  

          2)  Cooperative Binding
: binding of one ligand affects subsequent bindings
                        if
+  =  enhances subsequent bindings
                        if
-  =  sequential bindings are inhibited
                             ex:
HEMOGLOBIN:  binding of 1 O2 to a heme = Δ in local conformation
                                                            
enhances "Km" of binding of additional O2 to other
                                          subunits 
chains (mcb3.30) & cooperative binding (McKee 5.41*)
  

          3)  Ligand-induced binding activations of catalysis:
                a. inactive PKA is activated by cAMP...
                      binding of cAMP induces 
Δ in conformation, so that a tetramer dissociates
                      into 2 active monomers & a dimeric regulatory subunit   
(ecb16.25*)
                               thus a hormone signals --> cAMP --> active PKA dimer
                               without cAMP we have an inactive tetramer

   
 
               b. GroEL chaperonin:  is made of 2 multi-subunit rings            (ecb 4.10*)
                      binding of ATP & GroES to GroEL results in a tight peptide binding complex,
                      which closes the folding cavity allowing efficient folding of nascent proteins

  



 

 







 
 
  
   3. Calmodulin*: a Ca binding messenger protein: functions as messenger protein altering targets
                  Calmodulin, is a helix-loop-helix protein, has 4 Ca binding sites...                  [MOVIE
*]  
                  4 Ca ions bind = 
Δ in conformation - now binds target proteins = altering its activity>
                 Calmodulin modulates processes as inflammation, apoptosis, smooth muscle contraction, etc...

  
      
4. GTPase super family:  a group of hydrolase enzymes that bind & split GTP switching between
                         active/inactive forms via signal transduction.
(includes Ras & G-proteins)
                 GTP Binding Proteins (G Proteins)
                  
  are Active  when  GTP
  is bound to protein                                   ecb 15.15 & 15.16*
                           
Inactive  when  GTP  is hydrolyzed to
GDP
                                          
serve as molecular switches, esp. cell signaling.
   
     

      
5. COVALENT MODIFICATION of existing enzymes often
involves...
                 a.   addition of
P to an inactive enzyme --> activate enzyme via P transfer
                                             [reversible phosphorylation changes protein conformation] 

       
         b.  done by -
PROTEIN KINASES,  which transfer P from ATP       ecb 15.15*
                                                     tyrosine kinases add P to TYR residues of enzymes de-activating them
                                                     serine/theronine kinases add P to SER or THR residues

                                    - PROTEIN PHOSPHATASES...  dephosphorylate, thus inactivating


                             
  

 

 

 

   
   Net RESULTS of Protein Regulatory mechanisms...
                                
all Help Control & Regulate Metabolism.

        feedback inhibition (negative allosteric regulation
                                an initial enzyme is inhibited by end product

                        
        prevalent in the amino acid biosynthetic pathways - figure*

     Primary mechanism of action is altering enzyme's conformation
                                either negatively or positively
*
   

 
 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

SKIP THIS
Derivation of Michaelis-Menten Equation

k1             k3
E + S        ES         E + P
k2            k4

  rate limiting step is       ΔP/Δt   =  k3[ES]            (&   ΔP/Δt  =  v )

1.   Rate of formation of ES complex     ΔES /Δt   =   k1 [E T - ES]  [S]

2.   Rate of destruction ES complex      ΔES /Δt   =   (k2 + k3)  [ES] 

3.   Steady State Equilibrium          k1 [ET - ES] [S]  =  (k2+ k3) [ES] 

4.   Michaelis Constant  (Km)             (k2 + k3)    =      [ET - ES]  [S]
                                                                              (k1)                      [ES]

              down                             Km   =    (k2 + k3)   =     [ET - ES]  [S]
                                                                 (k1                     [ES]

5.   Solve for  [ES ]                           [ES]   =         [ET]    [S]   
                                                                              (Km) + [S]  

6.   Substitute in above    ΔP/Δt  =  k3 [ES]      v  =   k3   [ET]   [S]   
                                                                                 Km + [S]  

7.   Substitute Vmax for  k3 [ET]                        v  =       Vmax   [S] 
                                                                           
Km +  [S]    
 
 

 

 

 

 

 

 

 

 
















 

 

 

 

  

  Recall:  the definitions of enzyme activity:
                  a way of standardizing the expression of the physical properties of an enzyme...
                  most often measured by relative rate  substrate ---> product
  
          1 international unit of enzyme ACTIVITY is  that amount enzyme protein which converts
                        
    1 umole substrate per min at 25oC  &  optimal pH 

  
          1 unit SPECIFIC ACTIVITY
                        
    # units per mg of protein present   (e.g., 37umole/min/mg protein = 37 units/mg)

  
          1 unit MOLECULAR ACTIVITY
                        
    # units per umole of purified enzyme       (e.g., 12 units/umole of enzyme)

  
 




 

 

 

 

h

        









 Eadie Hofstee Plot
The Eadie-Hofstee plot is a way of plotting kinetic enzyme data so as to yield a straight line for reactions obeying Michaelis-Menten kinetics. This is done by plotting reaction velocity (V) versus velocity/substrate concentration (V/[S]). The slope of the line is equal to -KM and the y-intercept is Vmax.

An advantage of an Eadie-Hofstee plot over a Lineweaver Burk plot (yellow above) is that the Eadie-Hofstee plot does not require a long extrapolation to calculate Km. 

                                      MORE SAMPLES of GRAPHICAL PLOTS
 



 

Lineweaver-Burk Eadie-Hofstee