Cell and Molecular Biology
                  structure, function, & the molecules of cells.

Cells

   Visualizing Cell Structure in CMB   
        Methodologies, Techniques, & Procedures

 

Cells are too small to be seen with the naked eye and microscopes have
allowed the magnification of cells to identify structure and functions.
 

Microscopy:   
  [Links that may be useful, but are not required]                         
    History of Microscopy,    Optical Microscopy,    Microscopy Resources,
   
Virtual Library: Microscopy Resources,    Nobel for Transmission-EM,
   
EM-stock pics,    EM-Wikipedia,
 &   Journal of Visualized Experiments
  

Glossaries, Techniques & Procedures:
                          
[Links that may be useful, but are not required]
    Cell Biology Dictionaries,   Glossary of Techniques
  National Human Genome Glossary,
    General Procedures & Protocols - Cell Bio and Molecular Biology
  

                              

        you can follow along in ecb5e-pages 6-27*  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  Research Methodologies of CMB
  - from 1920 to 2020
 
   Instrument advances within this 100 year period are the epitome of modern scientific age.

   MICROSCOPY is the optical discipline using microscopes to view small cellular objects:
   the development of microscopy revolutionized biology and remains an essential tool of CMB
.
  
   2 Types of Microscopy:     Light (optical) Microscopy     &     Electron Microscopy
   

   Light Microscopes
* - optical microscopy involves the diffraction, refraction, or dispersion* of light
     (electromagnetic radiation) interacting with
live or prepared samples & subsequent collection of
     scattered radiation (light) to build up
magnified images
of small objects using compound lenses*  
      i.e.,
an objective lens - magnifies object (150x)  & ocular lens (10x) = 1,500x magnification.   
  
            1857 Zeiss sells 1st compound scope
        
      1872 Abbe partners with Zeiss & optimizes microscope designs (lens & condensors)
                       
- lens resolution* is 0.2 μm or 200nm*: near limits of light Microscopy-Airy disks 
                        - Scale of Life
* - relative sizes of molecules, cells, and multicellular organisms.
        types of light microscopy*         --> (for more info on the basic concepts - microscopy resources) 
     
  
student microscopes - AmScope  vs.  research microscopes -   Olympus BH2  &  Zeiss 710
        specimen preparation - living vs. fixed materials.
                     
killing, fixing & embedding-->   physical distortion via fixatives*
                     
Tissue Sections must be very thin 1-50um       - microtome*  sectioning*     $-$$   
 
            
Selective staining :  stains attach to specific molecules   (plant* & tumor)              
   
 

  
 
 

 
 
 
 
 
 
 
 


  Some Light  Microscopy Methodologies
...      ecb panel 1.1 pg 10-11

   
tagged precursors can trace molecules in cells & biochemical pathways:
  
     Autoradiography -
1940 S. Warren produced an autoradiograph, which is a microscope image on film
          (
in emulsions of AgBr) produced by a pattern of radiation decay (e.g., beta particles or gamma rays)
          
that can reveal the distribution of location of the labeled material in a cell.
                              
  methodology  &  preparation*...    one can also track proteins*
   
  
Fluorescence microscopy* [2008 Nobel]  a form of light microscopy where a cell part has been
         specifically labeled with a fluorescent molecules
(1st tag was Green fluorescent Protein).
       
 ► examples of fluorescent images  =  
fibroblast   &   mitosis   &   Limbs
 
                                                             
                          

     immunofluorescence microscopy - uses
antibodies fluorescently tagged to bind specifically to
         a corresponding antigen as a probe for identifying a particular molecule in cells, tissues, or

         tissues, or biological fluids:     ex.
 rat intestine*
  and   focal plane problems*

    
confocal fluorescence microscopy*- 1957 Minsky - confocal microscopes uses pinpoint
         illumination of fluorophore in
one focal plane
to eliminate out-of-focus fluorescence. A
         computer reconstructs the image and since only fluorescence in a narrow focal plane is
         detected, image
resolution*
is greatly enhanced providing sharper image...  $

                               
Recent advances in Light Microscopy  &  Olympus BioScapes microscopy Imaging
 
                               1998   cell imaging station      -   fluorescent-labeled sample detection and cost.
                                        2015   expansion microscopy  -   allow resolution to 70 nm levels vs. normal 200 nm.

              

 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
ELECTRON MICROSCOPY - uses a beam of electrons to create an image  ecb panel 1.1 page 11
        
wavelength of electron beam is 100K shorter than light rays = resolution in 0.2nm range
   
TEM  - Transmission Electron Microscopy - (electron optics):
       1933 
Ruska (1986 Nobel) 1st Transmission Electron Microscope  TEM-principles*  &  ecb4e  1.7a*
                    TEM passes e's through a specimen onto a viewing screen 
- Animation of how an EM worksEM*
                                   (magnifies million fold, theoretical resolution = 0.005 nm, but effective resolution is = 0.1 to 0.2nm or larger).
       1952  Porter / Palade - 1st TEM pics & EM stains - imaged via scattering of e's by molecules within
                             specimen (
heavy metal stains as osmium tetroxide for lipid membranes) stain = dark.
                            
specimens must be very thin = 50 nm or less;   sections are cut via microtome.
       1957  Robertson - unit membrane hypothesis  (all membranes look alike* in EM)
       1981  Tagging   - antibody tagging with gold particle in electron microscopy - fig 9.21*
       2001  computer image averaging allows 3D modeling: Tomography*
= ribosome & Ca-ATPase pump
     fFreeze Fracture EM - : samples are frozen, metal coated, & cracked along plane of least resistance,
                                           usually along hydrophobic membranes.

 
      1964
  
Steere  & Muhlethaler - develops freeze fracture EM -  prep*  &   pic1*
    SEM - scanning EM : provides a great depth of focus with detailed images of cell surfaces & organisms.
       1965  Charles Oatley - 1st scanning EMs are published.                
                
uses metal shadowing & coating* of specimens to reveal surface topography images*    
                 specimen bombardment releases 2ndary electrons
- ecb panel 1.1*   
       
         when focused onto detector reveals 3D surface details...
mcb fig 9.25* &  cancer cells
                some examples - neuron & plant & antenna
& pollen & Hitachi Table Top model &  Eye of Science
    Cryoelectron Microscopy -  [NP 2017] - aqueous specimen is frozen in liquid nitrogen (-2000C) protocol* 
                  specimens retain native shape (no fixatives) allowing minute structural details
* 
                  ThermoFisher Tundra Cryo-TEM to image large, biologically complex structures [cost]. 




            

    


  

 

 

 
    

Results of Microscopy Investigations of Cells...  
 
                     -
helped define some of the major EUKARYOTIC ORGANELLES

      The light microscope, so called because it employs visible light to detect small objects,
      is probably the most well-known and well-used research tool in biology.
Live cells lack
      sufficient contrast and internal cell structures are colorless and transparent. Contrast
      is increased by
staining
with selective dyes (plant section), which involves killing and fixing
      the sample, which can introduce
artifacts.

      The electron microscopy uses a focused electron beam on fixed sectioned of cells, which
      are static
(fig 1.7a) to describe organelles, mostly by presence or absence of membranes...


                       The material below on CELL ORGANELLES* is a general review of your
                      
freshman biology cell structure. Please REVIEW this material
ON YOUR OWN.
                       Pay close attention to new material highlighted with a red arrow 

                       At end of this review are Practice Question's on this material
.
 
 
 

 

 

 

 

 

 

 

 

  

 

    

REVIEW OF MAJOR EUKARYOTIC ORGANELLES...  [review on your own]

  
Double Membrane Bound Organelles
                                    
     

 1. nucleus...  largest; double membrane bound* - outer membrane contiguous with ER membranes.
         synthesizes DNA, rRNA, tRNA, primary transcript (mRNA preccursor)    
        
peri-nuclear space (2-5nm) is contiguous with lumen of ER                 nucleus em*
        
pores of protein nucleoporins (ecb 8.15*) regulates nucleoplasm-cytoplasm exchange
                
via NLS of 7 aa sequence @ C-terminus (N-pro-pro-lys-lys-lys-arg-lys-val-C)
        
nucleolus - regions of rDNA that makes rRNA (but, ribsosomal proteins made in cytoplasm)
        
nucleoplasm - the 'cytoplasm' of the nucleus
               
heterochromatin - condensed (darker EM color) = inactive DNA -    figure*
           
    euchromatin - non-condensed (lighter EM color) = active DNA
               
lamins - fibrous proteins adjacent to inner nuclear membrane = frame for nuclear shape

  

 
 2. mitochondria... conducts ATP production of cell via
oxidative metabolism of glucose & fatty acids
        outer membrane (50:50 lipid/protein) contains
porins (fig*) that  transports most ligands < 10K
        inner membrane (25:75 lipid/protein) strictly regulates most transport into mitoplasm
                 
cristae - infoldings of inner membrane (ecb14.8* &  figure*    pic1* & pic2*) 

          a new discovery of antimicrobial role* of mitochondria in killing bacteria
  
    
      

    
 

 

 

 


 

 

 

 
 3. chloroplast...
      largest green plant cell organelle (0.5-2.0 µm by 10 µm) has
      double membrane with extensive inner membrane-limited sacks called
thylakoids (ecb14.28*)
      absorbs light energy via
chlorophyllous pigments & makes ATP & NADPH (chemiosmosis)
      reduces CO
2 into CH2O
          Similarities of Mitochondria & chloroplasts...
            
1.  make ATP/NAD(P)H via similar mechanisms
                      -
chemiosmosis: oxidative creation of H+ gradient coupled to ATP synthase
            
2.  show mobility throughout cell
            
3. divide by fission independent of whole cell's division
            
4. autonomously replicate their own DNA [mito: 16,569 nucleotide pairs: about 37 genes,
                         
while chlp has about 120 genes - highly supercoiled & repetitive-up to 6 copies]
             5. both contain 70s - bacterial size ribosomes  [eukaryotes have 80s ribosomes]
   
         6. synthesize their own proteins on their own protein synthesizing machinery
 
 
  
          

 

 

 

 

 

 

 

 

 
  Membrane Complexes...   as Organelles: 

  4. endoplasmic reticulum... network of closed-flattened membrane sacks called cisternae
         found in all nucleated cells; involved in protein/lipid biosynthesis
         2 types: 
SER (smooth) - lacks ribosomes                                                        ecb 1.21*
                                            - makes FA & phospholipds (esp. in hepatocytes)
                                            - detoxifies hydrophobic chemicals including carcinogens & pesticides
                       
RER (rough)  - membranes bound with ribosomes                              ecb 15.12*
                                            - makes plasma membrane proteins & exportable proteins of
ECM
                                            - abundant in cells making  -  antibody proteins (plasma cells)
                                                                                    - pancreas (digestive enzymes & hormones)


 5. Golgi Complex... series flattened membrane sacks (cisternae) that take up ER transport vesicles
         and process contents via
glycosylation (addition of carbohydrate residues).
         3 divisions: 
cis - where ER vesicles enter                                                         ecb 15.2*
                           medial - where modifications (
glycosylations) occur
                          
trans - vesicle packages & budded off here for secretion               mcb9.6* 
 
                       
 
 

 

 

 

 

 


 

 

  
  

Single Membrane Bound Organelles: (Digestive)

  

6. endosomes... membrane bound vesicles of extra-cellular milieu internalized by ENDOCYTOSIS
        a. 
endocytosis - cathrin protein "coated" membrane pits - pinch off endosome vesicles
        b.
phagocytosis - whole cells engulfed & passed to lysosomes for digestion
        c.
autophagy - worn-out organelles fuse with lysosome   ecb 1.24 &  endosomes & lysosomes
*

 
7.
lysosomes... hundreds single membrane bound vesicles* (exclusive to animals- plants use vacuoles)
        have acid pH environment to help denature proteins (
H+ATPases* & Cl transporters --> HCl)
        contains
hydrolytic enzymes (nucleases, proteases, phosphatases, glycosylases) for digestion.
               
         Tay-Sachs (tt): defective lysosomal enzyme which degrades ganglosides,
                                                glysolipids buildup in neurons
dementia, blindness, and death
 
        nuclear & some cytosolic proteins aren't digested within lysosomes, rather by
proteasomes
,
        which are large
protein complexes inside all eukaryotes, archaea & some bacteria.
        In eukaryotes: located in nucleus & cytoplasm their main function is to degrade unneeded or
        damaged proteins by
proteolysis.

    

 

 

 

 


 

 

 

  
  Other Single Membrane Organelles:
  
  8. plant vacuole...  membrane limited interior space (up to 80% cell volume) containing
            membrane transport proteins accumulate ions, nutrients, & wastes.                
ecb 12.17*
            lumen holds
digestive enzymes (has acid pH optima [H-pump]- acts like lysosomes).
            tonoplast membrane permeable to water influx, helps establish turgor pressure (5-20 ATM)


  9. peroxisomes... spherical (0.2-1.0 µm) organelle containing oxidases (catalase) that use O2
                           to oxidize (remove e
-'s from) molecules as H2O2 (& other toxins).  mcb9.4*
           degrades FA's to acetyl groups - used to make cholesterols (esp. impt in liver/kidney cells).
               
                  X-linked adrenoleukodystrophy (ADL): no FA digestion occurs,
                                  leads to several neuro-linked defects and death.
                 
                                                                                                            

           plants contain glyoxysomes which oxidize stored lipids (very similar to peroxisomes).

   next


    







 

 
 
 
 
    ►  Membrane-less Organelles:  eukaryotic Biomolecular Condensates (organelles without membranes).
    In addition to membrane-encased organelles - as the nucleus, mitochondria, and Golgi apparatus, eukaryotic cells harbor a variety of condensate compartments that lack a casing (2017). These protein based liquid globules (membrane-less organelles) form by Phase Separations selectively permit entry of proteins, enzymes and substrates to carry out various cellular functions that would be less efficient or not possible at all in the cytoplasm. Membrane-less organelles allow cells to compartmentalize compounds and reaction rates and cordon off interfering molecules.  figure*
 
    These structures are highly dynamic, and range in size from 0.1–3.0 uM in diameter, often far bigger than just a few molecules clustered together or than multi-component molecular machines such as ribosomes (20 nm).
    The NUCLEOLUS, the largest and most prominent nuclear compartment lacks a membrane, and is a globular structure known to play critical roles in ribosome biogenesis.
   The emerging picture of the inside of the cell is that the cytoplasm and nucloplasm are complex fluids that can stably segregate, like a cruet of oil and vinegar [ liquid-liquid phase separation ].
other ex:   in slow-growing E.coli,  the RNA polymarase is not uniformly distributed,
                                                      but is clustered in liquid droplets in fast-growing E.coli.
                 Cajal body  -  in nucleus,  snRNP maturation  and  regulation and packaging of Splicesomes
                 P-body        -  in cytoplasm,  is a mRNA processing and decay entity
                 biomolecular condensate-mutations-diseases -  prevention of condensation formation = diseases ?
       


         

  

   

    

 

 

 

 

 

 

   


Prokaryotic "Geometric" Organelles:
  geometric compartments of reactivity in prokaryotes    
    Prokaryotes are defined as lacking organelles... In 2009 Egbert Hoiczyk observed 32 nm-wide structures resembling 12-sided dice, about the size of typical bacteriophages. These microcompartments have been found in a range of bacterial phyla, suggesting that the prokaryotic cytoplasm is highly organized. These microcompartments structures create a specialized microenvironment for metabolic processes ("organelles").
                                             *
    Microcompartments are composed of protein coats akin to virus capsids, but with a different assembly into hexagonal tiles forming 12 faces and pores. Bacterial microcompartment shells are built out of thousands of protein subunits of 3 basic structural motifs:  BMC-H, BMC-T, & BMV (fig*).  Searching microbial gene databases for these gene protein sequences turned up 23 types of microcompartments spread across 28 bacterial phyla.
   Prokayotic microcompartments can maximize the turnover of metabolites by keeping reaction intermediates close and interfering chemicals at a distance.              
Some ex:  carboxysome     - carbon fixation in cyanobacteria (via RuBisCo & carbonic anhydrase)
                 metabolosomes - enzymes that degrade metabolites & sequester toxic aldehydes
     


    


   


  


 

 

 

 

 

  
 
 
 

                "The Inner Life of a Cell " - a movie animation by David Liebler & Harvard U.
 

 
               a figure labeling quiz?:    animal*  (ans)    &    plant(ans)

                an electron micrograph labeling quiz.    the EM
* (ans)


                 Download Power Point  Practice questions practice questions...   (ans)

  


    next - molecular chemistry of cells      

 

 

 

 

 






















 

 

 

Please skip all the material below this point...

   Where does one get homogenous cell populations foe microscopy??? 
Cell Culture- growing isolated cells in defined media
  single cells in controlled conditions... form colonies (clones)
 
req: 370C, pH, salts, essential amino acids, vitamins,
  glucose, serum (growth factors - insulin & transferrin [Fe])

  

  mcb6.36
* & mcb22.3*      American Type Culture Collection
  Society for in vitro Biology & Plant Tissue Culture

Single Cell Analysis...
  Cytometer -
instruments for analyzing cells and
 
Sorting Cells* - via fluorescent tags &  core facility 
    
  
Microspectroscopy... a technique for 
         measurements of spectral absorption of stained
         microscopic material in cells.  
microspec apparatus
                                                                                                    

 

http://micro.magnet.fsu.edu/primer/java/electronmicroscopy/magnify1/

  How to video on electron cryotomograph

 

                                                    

  iClciker M3 - Q1-5


   
                            computationally make a 3D tomogram- nuclear pores*   


     Modern Cell Biology is often dated from the works of G. Palade,  C. deDuve,  A. Claude          |
      
in electron microscopy, recipients of 
1974  Nobel Prize -  for their "inner workings of cells" 
    


        
&  Uromodulin*