CELLULAR ENERGETICS  read chapter 13-14/5e   [ Feb 12 Darwin's BDay & Aug 25 Hans Krebs BDay ]
  How Cells Make ATP... molecularly - it's mainly by phosphorylation of ADP
       phosphorylation of ADP 
 
Cells evolved 2 Processes to capture electron energy to Phosphorylate ADP
       Heterotrophic Metabolism (mitochondria)
             Cell Respiration ("Oxidation of Foods")
             Anaerobic & Aerobic Reactions...
      
              Substrate Level Phosphorylation
                     Oxidative Level Phosphorylation
     
       Autotrophic Metabolism (chloroplast)
             Photosynthesis
                    
Photophosphorylation    
       chloroplast    
       Heterotrophy is done thru mitochondrial based processes in eukaryotes*
       Autotrophy is done through  chloroplast based processes in green plants*

        






        .......                  



 



  
3 Main Molecular-Cellular Mechanisms of ADP Phosphorylation
 
 1.
Substrate Level Phosphorylation - transfer of "P" to ADP or GDP.

           

  see ecb5e
  steps 7 & 10
  of glycolysis

 
see page 435
13.2* 
      
or
ecb panel 13.1
 
 2.
Chemiosomosis - or Oxidative Phosphorylation of ADP  via e- capture to make to ATP.
      Oxidation of glucose produces reduced NADHs that pass e-'s generating a H+ gradient.

         oxidation subst-H (glu)   +   NAD+ox   --H:-->   NADHred   +   product (CO2 + H2O)
         NADH ---e-transport--->   H+ proton motive force   --ATP synthase--> 
ATP
                                        
overview of mitochondrial processes*
   
 3.
Photosynthetic Phosphorylation  - sunlight provides e-  energy to add P to ADP.
        Light +  H2O  + NADP+  ---->   NADPH   --e--->   H+   --ATP synthase-->  ATP
                                                    overview of chloroplast processes*
 

 

 

 

 

 

 


 

   


 

 

 

 

 

 

 

 

  
 1st - CELLULAR RESPIRATION (Heterotrophy) is the Oxidation of Food Molecules.     
 
     
6 reaction processes involved in cellular respiration:   (glucose oxidation) 
            a combination of anaerobic and aerobic metabolic pathways... 
  Glycolysis                                            [cytosol]
         glucose  -->  2 pyruvate + NADH + ATP

Pyruvate decarboxylation                  [mitochondria mitoplasm]
        pyruvate  --> Acetyl-coenzymeA  via pyruvate dehydrogenase complex

Fatty Acid Oxidation                           [mitochondrial mitopalsm]
        oxidation of beta carbon of fatty acid yields NADH/FADH2  &  A-coA
  Krebs Cycle                                         [mitochondria mitoplasm]
        Acetyl-coenzyme-A  -->  CO2 +  H2O + NADH + GTP + FADH
2
  Electron Transport Chain (ETC)        [mitochondrial membranes]
        passage of e's from NADH/FADH2 to O2  -->  H2O  +  H+ gradient
  ATP synthase                                      [mitochondrial membrane]
        mitochondrial membrane
protein of 24 protein subunits, which
        makes ATP as H+ move into
mitoplasm with their chemical gradient.
        Mechanical rotation of the ATP synthase creates chemical bond energy.
          Overview via Locations of these Processes*              

 

 

 

 

 

 

 
  
GLYCO-LYSIS:  Greek (glykos)   =  "sweet" + "splitting"       Text description - GLYCOLYSIS* a text description

Embden-Meyerhof-Parnas Pathway of eukaryotes (1920s)  
  10 step enzymatic pathway that converts                             
          
hexose (C6)   -->   2 PYRUVATE (C3)  +  4 ATP (2 net)  +  2 NADH    

 - anaerobic -  no direct requirement of oxygen, but can occur in oxygen's presence 
 -
cytoplasmic location  (
seems too structured for randomness of aqueous solutions
                                           maybe a membrane-less organelle system?
)
             
Glycolytic Pathway*

  A - energy investment phase... (coupled Rx's)                         ecb4e Panel 13.1 steps 1-3*
 
           phosphorylation of low energy intermediates to high energy ones

  B - energy capture phase...
             
  2 key reactions types:                   
        
            A -   redox reaction (glyceraldehyde3-P-dehydrogenase)
        
            B -  
two substrate level phosphorylations              ecb5e Panel 13.1 steps 6 & 7*
     
                                   substrate-P  +  ADP  --->   substrate   +  ATP

     Karp fig 5.6 (pathway)   &   ecb panel 13.1 pg 428   

                                                                                             
   

               

 

 

 

 

 

 


 

 

 


 

       HOW CELLS USE PRODUCTS of GLYCOLYSIS
   Ancillary Pathways

Fates of PYRUVATE...         
   if
anaerobic – "fermentations"...
          1.  alcoholic fermentation  - via alcohol dehydrogenase       (ecb 13.6a ethanol)*
                             
Red wine bacterium's Proteome mapped
          
2.  lactic acid respiration  - via lactic acid dehydrogenase   
(ecb 13.6b muscle)*
  

   if aerobic -
          
3.
  
Krebs Cycle - pyruvate enters mitochondrial Krebs Citiric Acid Cycle

    
        
Fates of NADH... =  SHUTTLES*          Text description - NADH SHUTTLES*  text description
                     it is used in cytosol for reductive reactions, but some cells can move it to mitochondria. 
                     mitochondrial inner membrane is impervious to NAD+/NADH, but some cell have

                       an evolutionary advantage with Shuttles moving e's from the cytoplasmic NADH's 
              
        into mitochondrial NADH or FADH2 for eventual use in the ETC...

                                 
glycerol-P shuttle
   -  skeletal muscle/brain  
                                 
malate shuttle
         -  liver, kidney, heart muscle
  

 

 

 

 

 

 

 

 

  
  
Review of the KEY REACTIONS of GLYCOLYSIS    

     redox reaction involving NAD+         (see  step 6*) 
   

    
substrate level phosphorylation       (see  steps 7 & 10)  


    
energy summary of GLYCOLYSIS    (see  ecb 13.4*)     
              2 ATP to initiate pathway 
        
      2 substrate level phosphorylations 
        
      makes 4 ATPs (2 net ATPs),   2 NADH,   and   2 PYRUVATE
              anaerobic (oxygen not directly required)  
        
      F
ermentations (lactate & alcohol)  & the Shuttles

                         glycolysis summary animation (7 min)please view@home
 

 

     

 

 

 

 

 

 

   
  
KREBS CYCLE...  is primary process for Aerobic Respiration
              
[also referred to as: Citric Acid Cycle or Tricarboxylic Acid Cycle

                                                                         

                                                  Krebs cycle overview

 
        A cyclical biochemical pathway resulting in
 Oxidation
of cellular fuel molecules, such as:
         Carbs (glucose)
, Fatty Acids, & Amino Acids, while making CO2NADH, FADH2,  &  ATP

Some HISTORY       
   
1910's - enzymatic nature described - Dehydrogenases...  (EC 1.  =  Oxidoreductases)
   1930's - substrates identified as -  di-COOH's  and  tri-COOH's 
                            
experiments on minced flight muscle prep's via respirometry*  
   
1937 - Sir Hans Krebs [pic*] - citrate synthase (EC 2.3.3.1 - known as condensing enzyme)
                                acetyl-CoA [2C]   +  OAA [4C]   --->   citrate [6C]    +    CoA-SH 
   1948 - cycle localized within the mitochondria*
   1961 - Peter Mitchell - proposes Chemiosmosis... [a proton (H+) gradient makes ATP]

  but prior to Krebs Cycle we need to get glycolytic pyruvate into mitochondria...  figure*

  

 

 

 

 

 

 

 

 

 

 

 

 


 
Pyruvate decarboxylation via a Multienzyme Complex Pyruvate Dehyrogenase  
   
                                       
          Pyruvate dehydrogenase is complex of 3 enzymes (60 proteins in toto) that 
         
catalyzes the Oxidative Decarboxylation
of the alpha-keto acid pyruvate

           E2 core Human PDH      

   Pyruvate dehydrogenase [EC 1.2.4.1] is a multienzyme complex of 3 enzymes:
 
  60 proteins subunits [8,000 kD and a diameter of ~45nm - larger than ribosome]
        that is found in the mitoplasm of eukaryotes and many prokaryotes.

   
                E1.  pyruvate decarboxylase                
        [EC 4.1.1.1.] 
                                
12  dimers = 24 identical subunits 
       
           E2.  lipoamide transacetylase (reductase)  
  [EC 2.3.1.12] 
    
                            8  trimers = 24 identical subunits, each 3 lipoates 

   
               E3.  dihydrolipoyl dehydrogenase                 [EC 1.8.1.4] 
                                 6  dimers 12 subunits with FAD
           (figure)*                                                                 

 

          

 

 

 

 

 


 

 

 
   PDH  COMPLEX  catalyzes decarboxylation/redox reactions
... 
   
E1.
pyruvate decarboxylase    E2. dihydrolipoyl transacetylase    E3. dihydrolipoyl dehydrogenase 
  5 coenzymes
           1. CoASH      (3.368 p112)*             
        
2. Lipoate      (figure)*     
      
  3. Thiamine pyrophosphate  (figure)*
      
  4. E-FAD       (13.13 p432)*   
        
5. NAD+        (3.34 p111)* 

pantothenate (B5)  *  * 
lipoic acid (antioxidant)
* 
thiamine (B1) 
* 
riboflavin (B2) 
* 
niacin (B3)
*

    Mechanism of Action of PDH Complex*        Text description
                            - KREBS CYCLE a text description of PDH complex

 

 

 

        * 

 


 

 

 
  Overview of Aerobic Respiration:
       Processes include:   Glycolysis, Pyruvate Oxidation, Krebs Cycle, and the ETC.

             Overall reaction of the Kreb's Cycle:     
                
acetyl-CoA + 3NAD + E-FAD + GDP + P + 2H2O ---->  
                         
                          --->    CoASH + 3NADH + E-FADH2 + GTP + 2CO2

       Acetyl-S-CoA from pyruvate oxidation enters the Krebs Cycle:

   
   8 ENZYMATIC REACTIONS of KREBS CYCLE
   simple
*  &  complex: panel 13.2  &
           
4  dehydrogenases - ISDH, a KGDH, SDH, MDH,                          EC 1. oxidoreductase
           
2  hydratases - aconitatse & fumarase   (forms C=C)                    EC 4. lyase
           
1  thiokinase - succinyl-CoA synthatase                                         EC 6. ligase
           
1  synthetase - citrate synthase                                                       EC 2. transferase

           
2  multi-enzyme complexes 
- each with 60 proteins  &  5 coenzymes each 
       
                    1.   pyruvate dehydrogenase  (figure)                            EC 1. oxidoreductase
       
             
       2.   alpha ketoglutarate dehydrogenase (figure*)         EC 1. oxidoreductase

           
   

 




 
 
 
 
 
 
 
 
 
 
 
 





 

 

 
the Cycle itself -
  
    Important Key Metabolic Reactions of KREBS CYCLE       review of key reactions
                        NAD & FAD are reduced         (3 NADH & 1 FADH /ACoA)
                        substrate level phosphorylation occurs  
GDP + P --> 2 GTP/glu  ( 2 ATP eq.)
                        decarboxylation            (
-COOH  -  2 from AcoA  &  1 from PDH step = 3 total)
                        acylation via CoASH    (
succinyl-CoA - akin to PDH;   thus 2 times)

     
    thus Each turn of the Cycle (C6 --> 2 C3, cycle occurs 2x)
   
                     4 protons passed to coe's   (3 NADH  &  1 FADH2)        =   6  NADH & 2 FADH2 
                  
     2 CO2's are released                                                      =   4  CO2's 
                       
1  GDP is phosphorylated to GTP (equivalent to ATP)   =   2  ATP equivalents

  
                          full version of Krebs - panel 13.2 pg442
                                                                   
                              Cellular Respiration Summary - animation*8 min - view@home
                                                  

 

 

 

 

 

 

 

 

 

 


 

 

 
   
Carbohydrates vs. Fats as aerobic  energy sources for cell respiration?

       the energy sources for cellular respiration include  fats & carbs - fig 13.10* ]

    FATTY ACID METABOLISM          

       1st is breakdown of a fat:
                  
triacylglycerol =
ebc fig 13.11 Fats*
 
                 fat/lipid droplet & fatty acid = figure  &   ecb panel 2.5 pg 74
  
  
   converts free fatty acids in blood into to Acetyl-CoA in the mitochondria
   

 
The steps of Fatty Acid Oxidation Cycle are referred to as BETA OXIDATION

      
A.   oxidation of COOH end of free fatty acid & linking FFA to CoASH in cytoplasm
                                           H3C-H2C-H2C-H2C-H2C-
COOH   +  CoA-SH
      
B.   transport of fatty acyl-coA into mitoplasm from cytoplasm
                                           H3C-H2C-H2C-H2C-H2C-
CO-S-CoA
   
   C.   oxidation of fatty acyl-coA into 2 carbon fragments of Acetyl-CoA --> K.C.
                                          
H3C-H2C-H2C-H2C-COOH    +    H3C-CO-S-CoA
  

               B



 









 

 

 
  there are 4 enzymatic reactions of the beta-oxidation cycle...

1.   long fatty acyl-CoA SYNTHASE [EC 2.3.1.86 - transferase]
                FA-COOH + ATP + CoASH   <-->   FAcoA + AMP + PP 
                
                converts cytoplasmic FFA to fatty-acyl-coA  [c-(cn)-c-c-ScoA]

2.   carnitine acyl-TRANSFERASE 1  [EC 2.3.1.21]                      (outer mito memb.
        
       FAcoA + carnitine   <->   Fatty acyl-carnitine + CoASH 
                                
transfers FAcoA onto carnitine for transport across mito...
                                carnitine is a quaternary ammonium compound.

3.   carnitine acyl-TRANSFERASE 2                                               (on mitoplasm side memb.)
               Fatty acyl-carnitine + CoASH   <-->   FAcoA + carnitine 
                                releases carnitine & leaves FAcoA inside the mitoplasm

                                 FATTY ACYL TRANSPORT*- steps 1 to 3   

4.   fatty acyl-coA DEHYDROGENASE   [EC 1.3.8.7]                       (in mitoplasm)
         
     oxidizes mitochondrial FAcoA & reduces  FAD  and  NAD+ 

             

 

 

 

 

 

 

 

 


 

 

 


 
 
step 4 - of Beta-Oxidation Cycle via fatty acyl-coA dehydrogenase enzyme [EC 1.3.8.7]
  

   the
sequence of steps for this mitochondrial dehydrogenase enzyme system include... 
        
             a)  dehydrogenation with   -  FAD --> FADH2  
                      b)
 hydration                       -  addition of water 
                     
c)  dehydrogenation with    -  NAD --> NADH. 
                 
     d)  thiol clevage
  with          - CoASH 
                            
fig 13.11A pg 439*    Fatty acids & amino acids lead to A-Co-A's*
   

                           release of a 2carbon fragment as Acetyl-CoA, feeds to Krebs cycle

   Net resulteach turn of the cycle shortens a long chain fatty acid by 2 carbons
                     generating 1
AcoA for entry into Krebs cycle  +  1 NADH  &  1 FADH2 ...  

                     so far little direct ATP (or equivalent GTP)  has been made per Glucose
                                                   (
4 in glycolysis & 2 in KC)  

    Heterotrophic energy sources for making ATP for Cell Respiration includes:
                     Carbs,  Fats,  & Proteins *    and    amino acids*

         Most of the energy of glucose oxidation in now in NADH, FADH2 & only 4 ATP net
         made by substrate level phosphorylation.  The majority of cellular ATP will everntually
         be made in the Electron Transfer System of the mitochondria...

          Back to Bb   and         Lecture topic (...the ETC)   

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 


 

 


 

 

 

 

 

 

 

 


 

 

        SKIP this table

             Balance Sheet Aerobic Oxidation   6C- glucose   vs.    6C- FFA

  Rule of Thumb... the  P/O ratio (via mito & ETC)    1 NADH  =  3 ATP  &  1 FADH2  =  2 ATP 

 Cell RESPIRATION via glucose  beta-OXIDATION via 6C-FFA (c-c-c-c-c-c)
 to start - GLYCOLYSIS                         -  2  ATP  @  LIGASE step     -    1  ATP
   glyceraldehyde DH
   PGA kinase (
via SLP)
   pyruvate kinase (
via SLP)
  + 2 NADH*   + 6  ATP 
                       + 2  ATP
                       + 2  ATP
  glycerol-1P of fat   → 1 NADH = +2 ATP
  → 1 DHAP = +2 ATP   
 
 KREBS Cycle per each PYR    per 2 cycles @ Fatty-AcoA-dehydrogenase
    PDH                 - 2CO2   + 2 NADH      + 6  ATP          + 3 AcoA* 
         + 2 FADH
2
        
+ 2 NADH 


    +    4  ATP

  
    +    6  ATP
   
+  10  ATP
    ISDH                - 2CO2 
   
αKGDH           
-  2CO2 
    thiokinase
    SDH
    

    MDH
  + 2 NADH      + 6  ATP
  

  + 2 NADH      + 6  ATP
  

  + 2 GTP         + 2  ATP
  + 2 FADH2     + 4  ATP
 
+ 2 NADH      + 6  ATP
 Totals 1 glucose --> 2 ATP + 2 pyruvate --->
                - 6 CO2  + 2 ATP  + 10 NADH
*  + 2 FADH2 + 2 GTP
Totals   6C-FFA via   beta-oxidation   -->     10 ATP
                 &
 *Krebs cycle (3 AcoA)  -->  ~ 36 ATP
              *per gly+Krebs+shuttles     total ATP     =  36 to 38
 
                                ATP via 1 AcoA alone  =  12
           total ATP = ~ 46 ATP - 1 ATP   =   ~ 45 ATP
                                           a gain of 
~ 7 to 9 ATP

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Skip the material below for fall 2011 - go to ETC lectures

 
 
Regulation of Glucose Oxidation (via Glycolysis & Krebs Cycle)...

     substrate availability - mass action controls flow of intermediates [out & in] - fig 13.23*
    
allosteric inhibition - PFK-1 & 2*  (recall  classical feedback inhibition models - fig 4.38 pg 152)
    
covalent modification - reversible phosphorylation... 
   
                                                 protein kinases & phosphoprotein phosphatases     [Review

     4 key enzymes are involved in Krebs regulation… 
        1. PDH           [arsenic poisoning]  + AMP/NAD          -  SER-P by kinase > inactive
        2. citrate synthetase + ADP                     - ATP/NADH/cit/AcoA 
        3. isocitrate dehydrogenase + ADP/Ca+2           - ATP 
        4. alpha-keto gluatarate dehydrogenase + Ca+2                    - AcoA   &   NADH

             my figure*           [apply regulation to the  metabolic charts Nicholson ]
 

      Karp's 5e version fig 5.7 page 185

                   Cancer & Metabolic Reprogramming 
 

 

 

 

 

1st: Cellular Respiration (HETEROTROPHY)...   Oxidation of Food Molecules
                  Evolution of anaerobic/aerobic metabolism was a major step
                  in the history of life on planet Earth...
                         
   
   described as:
           -  series
cytoplasmic & mitochondrial...            
     
           -  linked enzymatic pathways  

          
-  catalyzing stepwise OXIDATION of 'food ' molecules to make ATP & NADH    
                   
physiological view:  uptake of O2  &  release of CO
2                    
                  
 biochemical view:   O2 reduction  &  CO2
production

 
3 Stages:   1. Digestion of food polymers  [CH2O]n   -->  [CH2O]  monomers    (we'll skip)  
  

                  
2. Production of AcoA  
(via pyruvate)      -->     glycolysis  &/or  Fatty Acid oxidation
      

                
  3. Oxidation of AcoA to CO2 & H2O   -->  Krebs Cycle  &  Electron Transfer