How do cells Communicate
...
   
     a - 
in multi-cell organisms contact between cells is critical for inter-cell communication*.
     b -  cell membranes contain specific protein RECEPTORS, which bind &/or transmit
           
extra-cellular SIGNAL MOLECULES converting signals into specific cellular response
s.
    

  
Some UNIVERSAL PRINCIPLES of cell communication are now well understood:
            - 
cells use many different signal molecules and receptors, for many cell functions. 

            - and a simple mechanism of signal/reception has survived throughout evolution.

                  - an analogy: auto industry... cars basically have same parts (engines, fenders, lights)
                    and the variety of different shapes and patterns may be boundless.


  
A key mechanism of Cell to Cell Signaling is SIGNAL TRANSDUCTION*...
    
           Here an exogenous signal molecule is received by a cell receptor and,
                          converted (transduced) into a response by the receiving cell.


        
      This pattern is remarkably similar in all cells;  probably evolved very early, 
                          even before multicellularity (maybe even in single cell prokaryotes),
                          and has been highly conserved in today's progeny of ancestral cells.

                                                                        

 

 

 
 
 
 
 
 

 

 

 
     __________________________________________________________________________________________

  Cell Signaling can be LOCAL or DISTANT...

     PARACRINE (local) SIGNALING:
         local regulator chemical messengers are targeted to specific receptors 
         often includes: growth factor proteins that promote cell division & growth
                  & neurotransmitters that move across synapses to other neurons

  
  ENDOCRINE (distant) SIGNALING:                                              examples*    
          specialized cells release molecules (often hormones) into blood vessels of
          circulatory system,  hormones move to distant target cells... elicit response

     __________________________________________________________________________________________

  Cell to Cell SIGNALING SYSTEMS...  a few examples... 

   haploid cell mating in yeast cells*         (picture of asexual budding in yeast cells)
       sex-1    ["a"-cell : releases a-factor (peptide of 12 aa's) - binds to sex-2 receptors]
       sex-2    ["
α"-cell : releases α-factor - binds to sex-1 receptors]
                                   the result is fusion of 2 cells (a mating) producing diploid cell.

    
__________________________________________________________________________________________

 

 

 

 

 

 

 

 


    
__________________________________________________________________________________________


   COMMUNICATION via CELL-TO-CELL CONTACT:
                    - is where signaling is due to direct contact exchanges...
                    - probably how cell c
ommunication may have begun?

                  gap junctions & plasmodesma...
                          results in cytoplasmic continuity favoring cellular interactions...

                                          fig 11.4a*

                  cell surface contacts... 
                          receptor protein specificity
(as above with yeast cells
)...
                          cell to cell contact is likely how multicellularity began?

                                         
fig 11.4b*
    
__________________________________________________________________________________________

  Cell Signaling often works via MOLECULAR SWITCHES...   examples*  

   

 

 

 
 
 
 
 
 
 

 

 

 

 
             the universal model of a Signal Transduction Process has 3 stages...
                        

 
 
                           RECEPTION,   TRANSDUCTION,  and  RESPONSE      

    1st.   RECEPTION...  is not unlike recognition of enzyme for its substrate [ES complex]
              ... akin to the lock-&-key hypothesis of enzyme-substrate recognition (Km & Vmax
*)
              ... ligand (signal) molecules (usually water soluble) are recognized by
                                  only one receptor protein bound within a cell membrane.
 

   

    2nd.  TRANSDUCTION...  
a conformation change in a receptor leads to
              ... shape and activity changes in other intra-cellular molecules
              ... which may result in multiple, conformational changes in other cellular proteins

                    a cascade
* of inactive enzymes ---> active enzymes, & so on, etc...

    3rd.   RESPONSE...  usually a cellular activity, as enzyme activation or catalysis, or
                               rearrangement of cytoskeleton (movement), or specific gene activity.
    

Signals & Receptors*  &  specific example  Fig 11.6 - Sutherland & cAMP*    
     Pp2 - Pp5


                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 
a Generic Example of a Receptor Protein & Signal Transduction System:

     
G-Proteins  &  G-Protein Coupled Receptors... 
GPCR's
            membrane receptor proteins that bind
GTP/GDP  
& switch between
            active & inactive forms. Some 50 to 100 GTP binding G-protein are estimated.
                                                
(R. Lefkowitz & B. Kobilka - 2012 Nobel Prize-GPCRs)

      G-protein receptor structure... has 7 transmembrane
α-helicies
                & has site for signal molecule and G-protein to bind
                      fig 11.8a
*

     

      a signal molecule binds to a receptor -&-> conformational change occur --> 
               G-protein structure
* is inactive when GDP is bound to alpha subunit.
               an inactive G-
(GDP)-protein now binds GTP (replacing GDP)...            
               and active G-
(GTP)
-protein stimulates other inactive enzymes...        fig 11.8b*
                    adenylyl  cyclase  structure
*
       if G-Protein has its GTP hydrolyzed   -->   it inactivates G-protein...      
                      (Cholera & Botulin toxins... keep G-proteins active -->
diarrhea).

an Example of Scale via G-protein responses involving a 2nd messenger molecule:
       "Fight or Flight Response"...
  (see fig 11.12
*)  is due to a phosphorylation cascade 
               
magnification... 1 signal molecule gives multiple-enhanced response - fig 11.16*
                                    Summary animation of glycogen breakdown*review
        

   another examples:    another 2nd messenger = IP3 & Ca ions*   
                 
 
  
                       
                          
 

 


   

 

 

 


 
    

         While the basics of Signal Transduction are simple in design
         the specificity of cell signaling is varied among cells
and can lead to a...

         a Multiplicity of Signal Transduction Responce Mechnaisms*  

            
           cAMP signaling is extensive in cellular function*
  


     Specific Case Examples: 

  
         1. Aldosterone reception & kidney regulation    -  Campbell 11e- figure 11.15*

  
        2. Ligand gated ion channel signaling               -  Campbell 11e- figure 11.8*

         3. Cortisol and nuclear receptors                         -  Campbell 11e- figure 11.15*

        4.  Signal Transduction of gene activation          - 
Signals & Gene Action*review     

     
                                    a Summary review of Receptors in Cells*review

 
    
             copyright c2024     Last update -  March 2024
          
  Charles Mallery,    Department of Biology,   U.of Miami,  Coral Gables, FL 33124          





























 
           bckac.       next lecture.      

                                 



       

 

 

 

 

 

 

 


 

 you are not responsible for the material that follows below:




 - Janus tyrosine kinase & inflammation* 

 



 
other examples of Receptor Proteins & Signal Transduction Systems...

2. Tyrosine Kinase receptors...  receptor proteins that have kinase activity...
            i.e., they can add a
-PO4 group to tyrosine residues of inactive proteins 
                  making them active   --->   cell response                              
fig 11.8*
                                                                                               
         many growth factors (stimulate cell division & growth) function via
tyr-kinases 

      ...  binding of growth factor (signal ligand) causes 2 single tyr-kinases to aggregate
     ...  the tyr-dimers, now each phosphorylate the others tyr residues via ATP kinase activity
     ...  the activated-phosphorylated dimer binds relay proteins, activating them,
                    which in turn (by cascade effect) can active up to 10 others, etc...

               net result... 1 signal molecule can trigger many proteins and multiple pathways.
 

 

 

 

 

 

 

 

 

 

 
more examples of Receptor Proteins & Signal Transduction Systems...

  3.  Ion channel Receptors...  [ligand gated protein channels]
              a protein
PORE in a membrane opens in response to binding a signal molecule
               
ex: a neurotransmitter as acetylcholine (Ach) opens channel and lets Na+ ions 
                     flood into cell, changing that cell's electrical charge (potential)
see fig 11.9*

                              How Potassium ion Channel works - 2003 Nobel Prize in Chemistry   H2O
   
   4.  Non-membrane bound [cytoplasmic - intracellular] Receptors...
             signal molecules diffuse through membrane, where binding to an 
               
intracellular receptor protein initiates a cellular response.
                                               ex:  steroid hormones  (
see fig 11.10*)

   
          back to outlines                                                      key concepts*

                 copyright c2010     Last update -
  
next      Charles Mallery,    Biology 150, Department of Biology,   University of Miami,  Coral Gables, FL 33124
                        
Home |About |News |Syllabus |Lecture-outlines |Links |FAQ |Sitemap |Contact

            

 

 

 

 

 

  the material below is not required reading.

 

  Review of Some Important Points of SIGNAL TRANSDUCTION PATHWAYS

        most are like dominos... one activates another, then another, then another...
                                    producing a significant cascade multiplication effect.

1.    an Enzyme Cascade* - a model phosphorylation cascade effect...
              enzyme activation is by protein phosphorylation by protein kinase enzymes,
              that transfer P from ATP to another enzyme protein, thereby activating it.

2.     2nd messenger signal molecules...        cyclic-AMP           [cAMP = see fig 11.11*]
              signal molecule (hormone epinepherine) leads to activation
                    of membrane bound inactive enzyme Adenyl Cyclase
                                 ATP   ---
active adenyl cyclase--->   cyclic-AMP  
                    ( cAMP is inactivated by phosphodiesterase ).

              G-protein &  cAMP activation of protein-kinase-A                  see fig 11.12*
                             PKA, itself a kinase, can activate other proteins, etc...
                                (see epinepherine & glycogen breakdown -   
see fig 11.15*

 

 

 

 

 

 

 

 
 
some more POINTS of cell communication via signal transduction:

3.  cholera  toxin 
       
Vibrio cholerae grow in fecal infected waters, infect small intestine,
        produce toxin, which binds to a G-protein, prevents conversion of GTP --> GDP,
        thus G-protein remains active, causing cAMP to remain active....
 
                net result: small intestine secretes water and salts = perfuse diarrhea = fatal.

4.  Ca ions
       cells maintain a low cytoplasmic [Ca] by active transport of Ca out of cytoplasm
       pumps keep a low cytoplasmic [Ca], but high ER cisternae & mitoplasm [Ca]
  see fig 11.14*

               Ca itself functions as a 2nd messenger, like cAMP,
                       as [Ca] in cytoplasm goes up, activates Ca+ pumps, & other responses ensue...
                                 as muscle contractions, neurotransmitter release, etc...

5.   plant phytochrome action via G protein & Ca channels = greening*
        plant pigment involved in responses to light - seed germination, photoperiodism, flowering, etc... 
              

 

 

 

 

 

 

 


6.  gene activation via cascading signal transduction.            see fig 11.17*

 

 

  

 

 

 

 

 

 

 

 

 

 

 

5.   Other 2nd messengers and Ca activation...
                Diacylglycerol (DAG)   and   Inositol Triphosphate (
IP 3)

        a.  signal molecule binds to a G-protein or a tyrosine-kinase receptor
        b.  G-protein  activates  phospholipase-C,   an enzyme that splits lipids
        c.  phospholipase-C splits the phospholipid,
PIP 2, into   DAG  &  IP 3
        d. 
IP 3, as a ligand, binds to Ca ion channel of ER and increases cytosol [Ca]
       e.  increased Ca binds to enzyme calmodulin, changes its conformation, which
        f.  activates additional kinases and/or phosphatases. 
   see figure *


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Some specific examples of G-protein cellular responses:
                mouse embryos lacking one G-protein... show no blood vessel development
                some human embryos w/o  G-proteins... decreased senses (esp: vision & smell)
                cholera and botulin toxins... function by interfering w G-proteins.

 

 

 

 

 

       
    &     Logic Circuits   
        
Gene Action signaling*
  
Medical applications include Drug Action, & Drug Allosterism 
           animation of 2nd messenger*      

           Video of binding of hormone to its receptor followed by effects it triggers*view@home