PHOTOSYNTHESIS...
 
defined
   

LIGHT Light driven phosphorylation of ADP...     
    -  production of ATP via photophosphorylation   
    -  creation of a proton motive force
    -  ATP synthase to add P to ADP.

     phosphorylation of   ADP + P   -->    ATP
     
reduction  of            NADP        -->    
NADPH


     Cellular process - in bacteria, cyanobacteria,
           and eukaryotic cells with chloroplasts

  
    Capture of light energy by pigments -

     
     chlorophylls  &  accessory pigments

 
 
    Capture e’s  as reducing power into NADPH &
      ATP by photophosphorylation via an
ETC
  
    Reduction of CO2 to
CH
2O via NADPH
stoma
   






 
 
 
 
 
 
 

 
2 Fundamental Reaction Mechanisms

  

  LIGHT Reactions (photo-chemical reactions... non-enzymatic)
         molecular excitation of chlorophyll
* porphyrin ring by light results in...
         charge separation
via hydrolysis of H2O   releasing    2H+ and
 
½O2 
         generation of proton motive force* (H+ gradient) across thylakoid membranesx
         synthesis of ATP via an ATP synthase
x
         reduction of NADP to
NADPH* within Photosysystem I
  
 DARK Reactions (thermo-chemical rxs [temperature sensitive]... thus enzymatic)
         CO2 fixation* via  (
reduction) reactions that are reverse of glycolysis)
                  carboxylation rx:
   CO2  +  RuBP  -->  2 PGA   [ 1C + 5C --> 2 (3C) ]
                  reduction PGA with NADPH   -->   PGAL    
(glycolytic-like)
                  regeneration of RuBP via HMP  (5C sugar) pathway  -->  RuBP
   
                    6CO2 + 12H2O
* --> C6H12O6 + 6H2O + 6O*2
      Both Light & Dark reactions occur within the Chloroplast - fig 14.29*

 

 

 

 

 

 

 

 

 

 

 

 

 
Evolutionary origins of Photosynthesis...
   The origin of mitochondria & chloroplasts may have been symbiotic (ecb  1.20*)
                                               
    Photosynthesis is a redox process via the oxidation of an electron donor
                 that  reduces NADP and creates a proton motive force.
 
    1st autotrophic cells probably used H2S as donor e- donor:
                   as the purple-sulfur bacteria of today use
                                                 CO2
+ 2
H2S --> CH2O + H2O + 2S
                   cyanobacteria - are oxygenic photosynthetic prokaryotes
 
                               CO2 + 2
H2O --> CH2O + H2O + O2    
                   van Neil equation   (1931)...    Phts is a light driven REDOX reaction
 
                               CO2 + 2H2A --> CH2O + H2O + 2A
         Evolutionary origin of non-oxygenic photosynthesis is estimated to be about 3.8 bya,
         and geologists see signs of significant, sustained levels of atmospheric O2 some 2.5 bya &
         remains of cyanobacteria have turned up in rocks 2.7 bya in Western Australia. Traces of
         RuBisCo, the key phts enzyme that reduces CO2 have been found that are 2.7-2.9 by old.

     

 

 

 

 

 

 

 

 


 

 
Capture of Light Energy
Molecular Excitation of Chlorophyll

    Absorption of Light Energy... physicists tell us that light acts both as a
         particle and a wave, depending upon conditions: 

        
Visible light*:   - blue light   [440nm]      =    71.5  Kc/einstein   (1 mole photons)
                                    - near red    [680 nm]   =    42.0  Kc/einstein
  (1 mole photons)
                                    - red light    [700nm]     =    40.9  Kc/einstein
 
(1 mole photons)
        Chlorophyll absorption spectra*  &  Accessory pigments absorption spectra*

    phytol tail*    embeds the porphyrin ring (heme-like) in thylakoid membranes
                                         has paired e's with opposite spin which = structural stability

            Chlorophyll*  is in a Stable Ground State until light is absorbed
              
                         light absorption moves non-bounded π e's to higher orbitals
                                               1st excited singlet state...

                                                     2nd excited singlet state...    
[figure]
                                                            1st long-lived state...

  

  








 

 

      

        

FATES of Absorbed Light Energy:

1. Re-radiated as vibrational heat 

2. Re-radiated as
fluorescence* -
            rapid emission of light of longer wavelength & less energetic
                    690nm --> 740nm   in time frame 10-9sec,  


3. Re-radiated as phosphorescence* - 
            delayed  emission of light much longer wavelength
                    960nm --> 980nm   much longer in real time (1sec)


4. Induced resonance transfer* -
            vibrational e excitation induces similar electronic vibrations
            in adjacent molecules causing their excitation, etc...


5. Photoionization* -
            e's enters into the photochemical reactions of photosynthesis
            excited electrons pass to an acceptor leaving an
ionized chl+

 
 

 

 

 

 

 

 

     

     

       

   
Overview of the Photosynthetic Light and Dark Reactions*
     

The Light Reactions
are what happens to the photoionized  e-
  of chlorophyll.

  PHOTOSYSTEMS* are light harvesting complexes of chlorophylls,  Reaction Centers,
                                      accessory pigments, & primary e-acceptors in thylakoid membranes.

         PS-II* - holds special chlorophyll Reaction Center PSII* 
                     - water cleaving part of PS-2 has 4 Mn atoms that oxidizes & lose e-'s 
                     oxigenic photosynthesis was a great invention of microbial metabolism     
       PS-I*  - captures e- on ferredoxin-(FeS)  Ferredoxin-NADP-reductase NADPH
                      an animation model of the PS-I reaction center from bacteria*

  
the Pathway of e- transport  between photosystems  PS-II  &  PS-I  can work in series --> 
             Noncyclic photophosphorylation
ecb 14.37*
                     in oxygenic photosynthesis electron flow in along 3 legs:
                     from water to PSII, From PSII to PSI, & from PSI to NADP+                  
                                    PS-I    captures e- into coenzyme NADP+ -> NADPH   
                                    PS-II
    releases O2 from the splitting of H2O & creates a proton gradient

    or the Pathway of e- flow may be only through ONLY one photosystem - PSI
             Cyclic photophosphorylation (e flow)    
ecb 14.37*     

                net result is synthesis of ATP only with no NADPH: see how mcb 12.42**
 
                            light rx summary animation (5 min)*view@home
    

   
 

 

 

        

 

 

 
 

   
ATPase makes ATP
(just like in mitochondria)... (Summary Fig Light Reactions)

  Summary Figure Photosynthic
                                      Phosphorylation

        process is similar to mitochondria [mechanical to chemical bond energy*]

       comparison of locations of chemiosmosis (chlp & mito)    mcb 12.22*

       Chloroplast & Mitochondria cooperations*          
 
       Animations of photosynthesis -
ecb/4e movie 14.7*4.5min  

 

  

 

 

 

 

 

 


 

Dark Reactions of Photosynthesis... 
     occur in stroma (chloroplasm)
                consume ATP and NADPH made in light reactions
                reduce (fixation of) CO2 into CH2O (sugars)

             
Mel Calvin used radiocarbon tracing C-atoms during dark reaction via 14CO2 
"lollipop*"
            &  paper chromatography* was used to identify pathway.   1961 Nobel
 
  
3 different pathways are now known to reduce C into carbohydrate in plants...
    

             1st. CALVIN cycle or the C3-pathway
                         one CO2 + RuBP  (a 5C sugar) ---> two 3C sugars (PGA)
  
ecb 14.40*
                         two 3C sugars combine ---> 1 net glucose                            ecb 14.41*
                         Calvin cycle is a reverse of reactions in glycolysis*
                    Enzyme is ribulose-bisphoshate carboxylase/oxygenase
                             Rubisco  EC 4.1.1.39   
structure*  -  [50% of leaf protein]     
        
                 but  Rubisco can oxygenate (O2) RuBP rather than carboxylate it...
             --> 
Photo-respiration* - [definition
*]  that ultimately releases CO2.
                        This reaction reduces efficiency of phts by 20-50% in C3 plants.
                        To overcome plants make more enzyme: 50% leaf protein is 'Rubisco'.
                        Genetically modified
tobacco cells* may improve productivity by 40%.   
 

 
                                                
 




 

 

 

       

 

 


 

2nd. 
Hatch & Slack Pathway... a 2nd Carbon Reduction (fixation) pathway...
C4-pathway
                                        
uses another carboxylase enzyme - PEP-carboxylase [EC 4.1.1.31]
        
14CO2 PEP* -->
OAA   [4C-acid] -->  malate in mesophyll cells (H.Kortschak-1965)
                                        a 4C-acid ---> 3C (PYR)  +  CO2    in  mesophyll cells  and
                                        CO2 is reduced in Calvin Cycle of bundle sheath cells to glucose.

              
C4-pathway*  &  their differences in leaf anatomy*    &   PEP-carboxylase (fig + fig) 
  

        
Plants that have only the Calvin cycle (C3 plants) have only RuBP carboxylase, but
         C4 plants have both Rubisco & PEP carboxylase.

   

              Several groups of crop plants (Corn, Sugarcane, Sorghum), as well as certain
        dicots including pigweed & halophytes, saltbush, have developed C4 adaptations,
        which allow CO2 uptake & formation of a 4C molecule OAA instead of the 3C PGA's
        of the Calvin cycle.


 
               KEY comparison C3 vs. C4 enzyme efficiency:
                             Rubisco's - Km for CO2 is weaker in C3 plants,
                             than PEP-carboxylase's  Km for
CO2
 is in C4 plants   (Km-graph*)
             C4 phts overcomes the tendency of RuBisCO to use
O2 rather than CO2 in
             photorespiration by using a more efficient enzyme to fix CO
2 in mesophyll cells
             & shuttling this fixed carbon into bundle-sheath cells, where RuBisCO is
             isolated from atmospheric oxygen
.

     
      

 



 


 

 

             
 


 

3rd.  CAM Pathway...  (C4- Crassulacean Acid Metabolism)    -   CAM plants... 
         are C4 plants that don't separate C4 & C3 pathways in different parts of leaf
         (spatially) but rather separate them in time  (temporally).
         CAM was 1st studied in plant family
Crassulaceae
.

   At night, 
         CAM plants take in CO2 through open stomata at night, when the succulents are in a
         cool environment. The CO2 joins with PEP to form the 4-carbon oxaloacetic acid. OAA
        
is converted to 4-carbon malate that accumulates at night in the
central vacuole
.

    In the morning
         stomata close (thus conserving moisture, as well as reducing the inward diffusion of
         oxygen).  Accumulated malate exits the vacuole and is broken down to release
CO2
         that is taken up into the Calvin (C3) cycle.  

                                         Comparative figure  C4 v. CAM*

 
    

 

 
 
 
 
 
 
 
 

 


 
 


These C4 temporal and anatomical adaptations also enable these plants to thrive in
 conditions of (1) high day temperatures, (2) intense sunlight, & (3) low soil moisture.

  
CAM plants have same pathways & carboxylase enzymes as in C4, within the same cell...

         thus show TEMPORAL  not  SPATIAL  differences, regulated by stomatal uptake.
  

CAM path occur in a wide variety of plant species, mainly in arid and tropical regions...
         
other examples of CAM plants: Crassulaceae (Sedum, Kalanchoe), Cactaceae (cacti),
           Bromeliaceae (pineapple)
& all epiphytic bromeliads including Spanish moss,
           Orchids, and yucca. Also included are weeds as crabgrass & Bermuda grass
           & e
conomically important C4 crop plants include: corn, sugarcane, & sorghum.

  
       C3 plants represent only about    85%   of the world's flora
 
     C4 plants represent only about      5%   of the world's flora (large # of crops)
       CAM
plants represent only about 10%   of the world's flora. 
                           

                                     
 Comparative figure  C3  v.  C4  v.  CAM*

                end of material on Cellular Energy Metabolism.
                       Up next is Molecular Genetics with Dr. Daniel DiResta.
                                                                                
 
 
 

 

 

 

    




   





    LIGHT

 

 

 

        close

 

      close

 

 

 

 





    corn, sugarcane, sorghum


  SKIP THE MATERIAL BELOW:

    OPTIONAL MATERIAL: 
      
review of Morphological basis...    Chloroplasts  &  their structure  -  ecb 14.28 
   

      views of detailed structure of PSII and PSI
         
Karp fig 6.10 PS-II  &  Karp fig 16.14 PSI  &  some possible locales in thylakoids


     
     -->  combined action of PSII & PSI