NEUROPHYSIOLOGY...

Electrical Properties of Nerve cells (neurons)
Electro-physiology of neurons lie in Membrane Physiology
Model organisms is Squid Giant Axon (SGA)
diversity of Nervous systems

NERVOUS SYSTEM FUNCTIONS -

- 1. gathers sensory input (sense organs via Peripheral NS) -->
- 2. integrates information (CNS brain & spinal cord)-->
- 3. responds with motor output (effector organs muscle)

PARTS -

central nervous system - brain and spinal cord
nerve- bundle of neurons wrapped in connective tissue
ganglia- cluster of cell bodies of neurons
peripheral nervous system - carries signals in/out of CNS
somatic nervous system - carries signal to skeletal muscle
under conscious control
autonomic nervous system - signals regulate internallyunder involuntary control

FUNCTIONAL TYPES -

Sensory neurons... (affarent neurons)

- carry external stimuli from receptors to CNS Interneurons...
- integrate & relay sensory input to motor neuron
 Motor Neurons... (efferent neurons)
 - convert signals to effector cells = response

Structure of a vertebrate Neuron

- Dendrites

short outgrowth of Cell Body carry signal into Cell Body

- Cell Body is main part of cell w cytoplasm & organelles
- Axon

long outgrowth of cell body - carry signal to next nerve

- Schwann cell

cells surrounding axon in vertebrates - produce myelin (sheath) membrane-like insulation surrounding axon

- Nodes of Ranvier

space between successive Schwann cells - opens nodes speed of conduction - w/myelin (100 m/sec or 200 mi/hr) w/o myelin speed is less (5 m/sec)

Multiple Sclerosis - degeneration of myelin sheaths

- Synaptic Knob - enlarged end of neuron holds neurotransmitters in synaptic vesicles

Reflex Arc - unconscious response to external stimulus knee-jerk reflex -

neuro-muscular junction is the model for neurophysiology see web EM's

The electrical properties of cells:

RESTING POTENTIAL - the characteristic electric charge exhibited by a cell at rest... most often negative (-)

potential - (in electrical terms) is amount of electrical charge at one point in an electric circuit compared to some other point in the same circuit measured with a volt-meter (multimeter)

How to measure resting potential in cells inside Vs outside of cells - microelectrode

SGA - 65 to -70 mV i

Frog muscle fibers - 90 mV i

Nitella - 150 mV i

Valonia + 15 mV i

Causes of Resting Potential... all make inside (-)

- 1. active transport of Na & K = high Na out & High K in
- 2. differential permeability Na (slower in) & K (faster out)
- 3. lots of protein anions (-) inside
- 4. diffusion of Cl- in

Nernst $E_{mv} = +/- 62 \log_{10} [C_0]/[C_i]$

ACTION POTENTIAL - a self-propagating change in the voltage across plasma membrane of a nerve cell . name given to changes in electrical charges that occur during the stimulation of a nerve cell, usually visualized graphically from an oscilloscope recording

PROPERTIES of an AP

requires a living cell, i.e., requires O₂ for metabolism eliminated by metabolic poisons as cyanide measured using microelectrodes impaled into cells has threshold - amount of stimulus needed to "fire" an AP "all-or-none-phenomena" rapid - time course = 2-3 msec

EVENTS DURING an AP

depolarization - goes from negative to positive

Na channel opens - Na floods in = - 70mV to + 50mV repolarization - Na channels close & K channels open

K floods out

hyperpolarization - overshoot of resting potential refractory period - time before another AP can 'fire'

CONDUCTION of an AP along an axon...

local spreading of electric charge = change in membrane permeability of adjacent region leads to an autocatalytic - "domino effect"

Saltatory Conduction - node to node vertebrate conduction

Synapse-

functional connection between neurons. allows transmission of AP's between cells

synaptic cleft - space between neurons across which
a chemical transmitter diffuses

synaptic knob - site of vesicles holding neurotransmitter

vesicle - holds neurotransmitter (ex: acetylcholine)

pre-synaptic side - releases neurotransmitter

post-synaptic side - a receptor binds transmitter....

ion channels open - change potential charge of
post-synaptic membrane ----> new AP

removal of stimulus -

acetylcholine esterase (ACHase [enz]) destroys transmitter

Post-Synaptic Responses...

Excitatory neurons --> open Na channels = + = AP
Inhibitory neurons --> open Cl channels = - = no AP

EPSP - excitatory post-synaptic potential (-15mVi) excitatory neurons --> open Na channels --> + --> AP

IPSP - inhibitory post-synaptic potential (-75mVi)
 inhibitory neurons --> open Cl channels --> more (-)

AP - all or none 120mv polaorizations (-65 to +55mVi)

Integration of impulses - review figures Summation of Impulses - review figures

Neurotransmitters ...

neuro-muscular junction - acetylcholine (contractions) biogenic amines (CNS)

epinephrine & norepinepherine - increase Heart Rate serotonin & dopamine - affect mood, attention & learning psycho active drugs (LSD/mescaline)

function by binding to serotonin/dopamine brain cell receptors

Parkinson's = lack of dopamine schizophrenia = too much dopamine depression = reduced epinephrine/norepinephrine Prozac (antidepressant) blocks removal of serotonin from synaptic cleft

amino acids - ASP and GLU - excitatory (CNS)

... Chinese Restaurant Syndrome

GLY & GABA - inhibitory

peptides (small proteins)

endorphins - decrease perception of pain substance P - excitatory transmitter - signaling pain

Stimulants - chemicals that increase activity of CNS
cocaine - prevents re-uptake of Ach by synaptic vesicle
caffeine - increases post-synaptic threshold (Cl in = -)
stimulates HR & breathing rate
barbiturates & Valium - intensify GABA (inhibitory) effects

Poisons like strychnine - prevent loss of transmitter = tetanus