Table 3–1 Relationship Between the Standard Free-Energy Change, ΔG^{o} , and Equilibrium Constant

EQUILIBRIUM CONSTANT $\frac{[X]}{[Y]} = K$	FREE ENERGY OF X MINUS FREE ENERGY OF Y (kcal/mole)
105	-7.1 (-29.7)
104	-5.7 (-23.8)
10 ³	-4.3 (-18.0)
102	-2.8 (-11.7)
10	-1.4 (-5.9)
1	0 (0)
10-1	1.4 (5.9)
10-2	2.8 (11.7)
10-3	4.3 (18.0)
10-4	5.7 (23.8)
10 ⁻⁵	7.1 (29.7)

Values of the equilibrium constant were calculated for the simple chemical reaction $Y \Rightarrow X$ using the equation given in the text.

The ΔG° given here is in kilocalories per mole at 37°C, with kilojoules per mole in parentheses (1 kilocalorie is equal to 4.184 kilojoules). As explained in the text, ΔG° represents the free-energy difference under standard conditions (where all components are present at a concentration of 1.0 mole/liter).

From this table, we see that if there is a favorable free-energy change of -4.3 kcal/mole (-18.0 kJ/mole) for the transition Y \rightarrow X, there will be 1000 times more molecules in state X than in state Y.